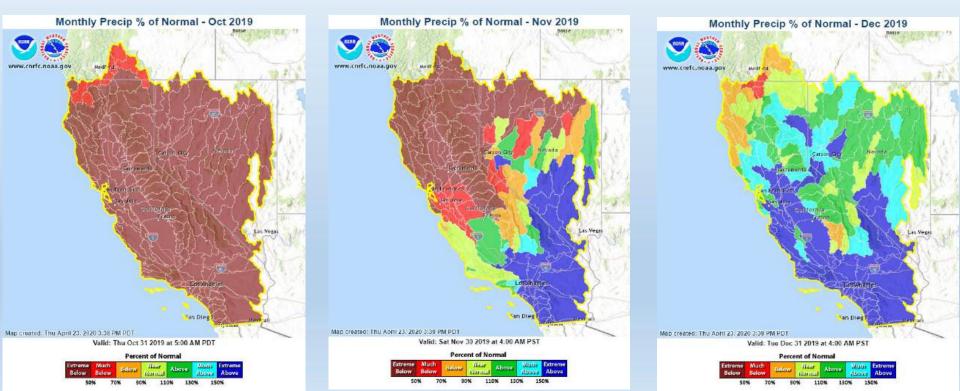


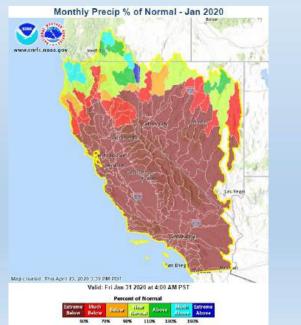
2020 Water Year Recap

Highlights


- Dry fall throughout California and Nevada
- Moderate storms in Dec & late Jan kept AJ forecasts near median
 - Low snow levels associated with storms
- Record to near-record dry February throughout the Sierra
 - Some melt observed below 7kft in early March
- Wet conditions in late March/early April improved water supply conditions
- Warm period in late April and early May led to rapid depletion of the snowpack and early snowmelt peaks
- AJ runoff was 40-70% of average in the Sierra; driest conditions in the south
- Well below average snowpack in the Ruby Mountains; better snowpack in the watersheds above Elko
- FSNC1 only forecast point to reach flood stage
 - Only a few points reached monitor stage
 - No weir flow on Sac River

Dry fall conditions

- Slow start to the water year with below normal precip
 - Near average precip observed in December



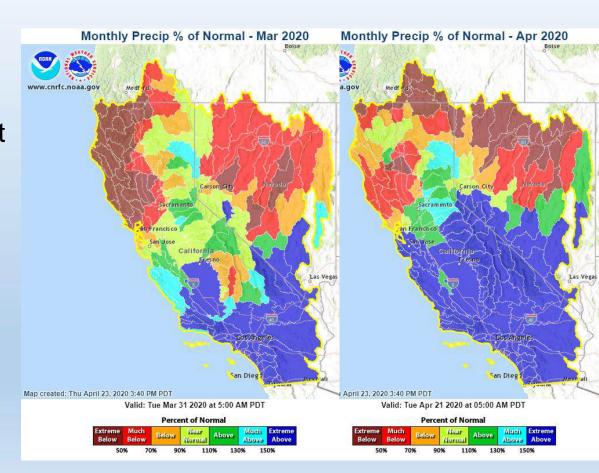
Dry winter

- Continued dry conditions throughout winter
- Sierra precip indices for February were at/near record lows
- Significant decline in AJ forecasts

Miracle March?

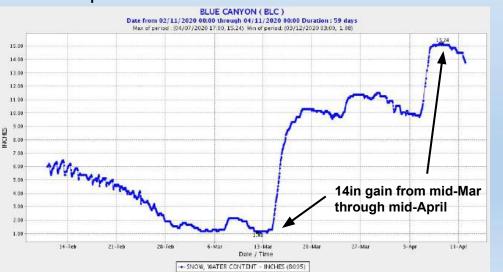
- Not quite, but provided a much needed boost to AJ forecasts
 - Indices show near average conditions for the month

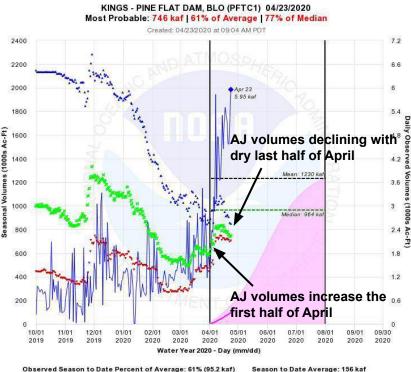
	March 2020 Precipitation	% of Average For March	Season Total to 3/31/20	% of Seasonal Average to 3/31/20
Northern Sierra (8 stn index)	6.2 inches	81%	24.2 inches	55%
San Joaquin (5 stn index)	6.2 inches	101%	18.0 inches	54%
Tulare (6 stn index)	3.5 inches	76%	12.2 inches	50%


Data courtesy of CA DWR

Spring precip summary

- Heavy precip across
 Southern California
 Cutoff low the 2nd
 week of April brought
 a series of precip
 - events
- April also brought above average precip to the Sierra south of Lake Tahoe
 - Near average conditions to the north of Tahoe





Spring precip impacts

- Additional precip the first half of April improved water supply conditions across much of the Sierra
 - Systems were cold with low snow lines
- Some of the gains in AJ volume made in the 1st half of April were lost with a dry second half of April

Historical Apr-Jul Vol Max: 3110 kaf in 1969 Historical Apr-Jul Vol Min: 211 kaf in 2015

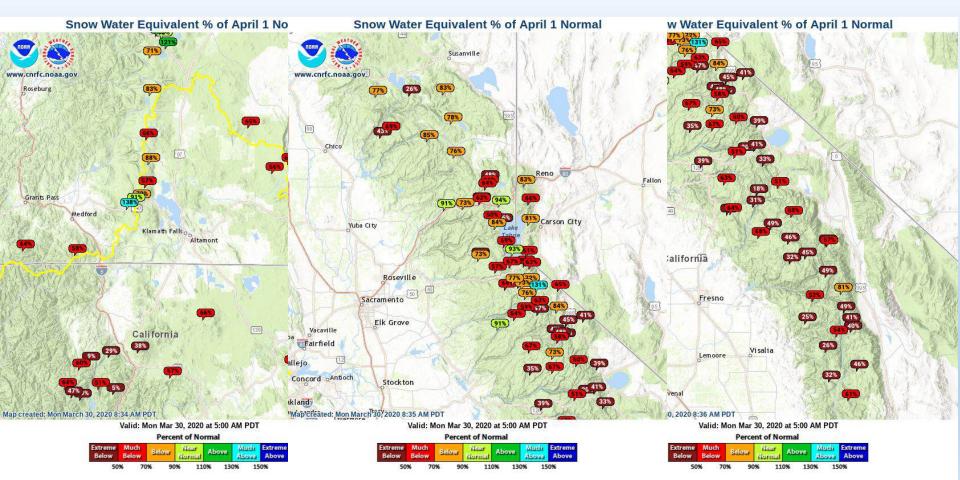

ineteneuripi eurierina. erre karin reee ineteneuripi eurierinin. Err karin Eere				
30-Year Apr-Jul Vol Mea	n == 30-Year Apr-Jul Vol Media	Season to Date Avg	NWS Apr-Jul Fcst	
- Season to Date Obs	— Daily Obs	Obs Peak	ESP Apr-Jul Fost 10%	
ESP Apr-Jul Fost 25%	ESP Apr-Jul Fcst 50%	ESP Apr-Jul Fest 75%	 ESP Apr-Jul Fcst 90% 	

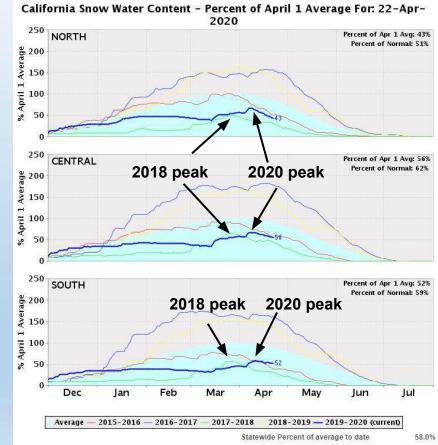
Figure courtesy of CA DWR

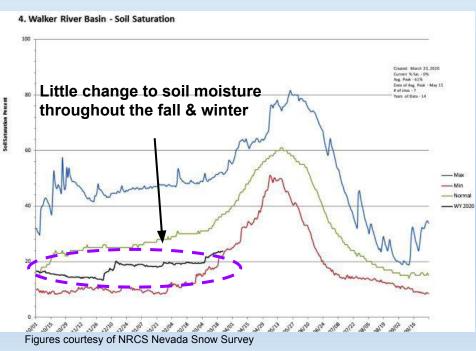
TIORR

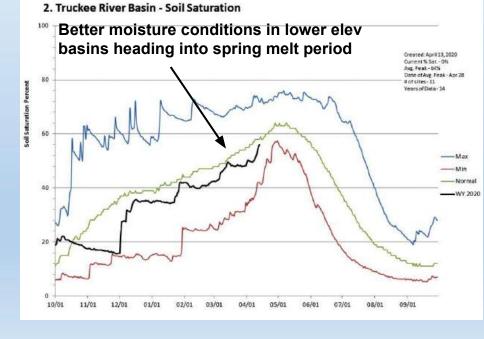
April 1st snowpack conditions

Snowpack peaks

- Wet conditions continued into first half of April
 - Cold storms were again the norm
- Peak snowpack similar to that of 2018
 - Mid-April snowpack
 peak 3-4 weeks later
 in 2020



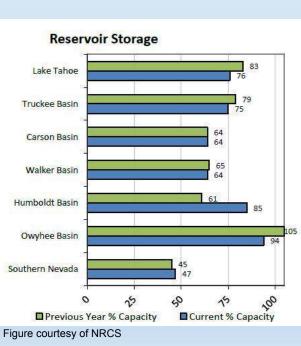

Figure courtesy of CA DWR

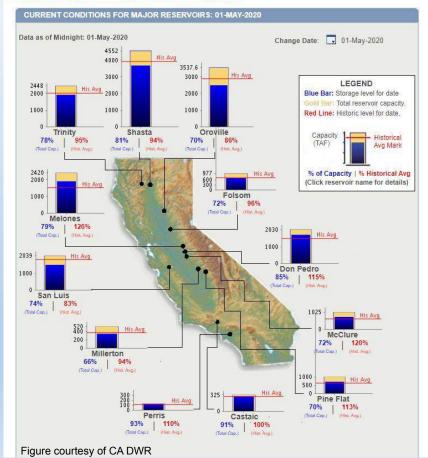


Soil moisture

- Cold storms produced mostly snow in the fall/winter.
- Soil moisture lacking during transition to spring
 More pronounced in higher elevation basins



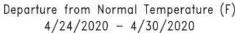


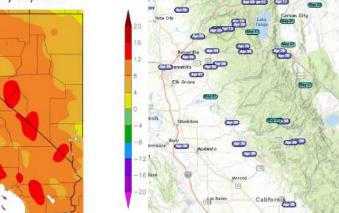

Spring reservoir conditions

- Reservoir storage as of May 1st
- Reservoirs in good shape due to carryover from a wet WY 2019

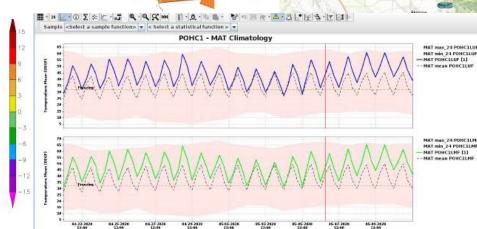
California Data Exchange Center - Reservoirs

Spring heat wave

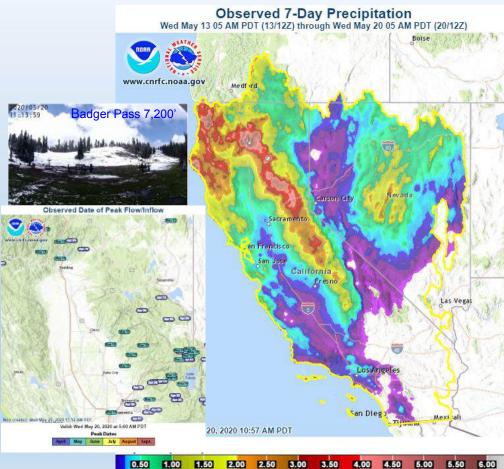



- Near record temps last week or April and early May
- Snowmelt peak flows April 30/May 1st

WEST WALKER RIVER - HWY 395 BELOW LITTLE WALKER (WWBC1) Latitude: 38.38" N Longitude: 119.45" W Elevation: 6591 Feet Location: Mono County in California River Group: Eastern Sierra Departure from Normal Temperature (F) 5/4/2020 - 5/10/2020

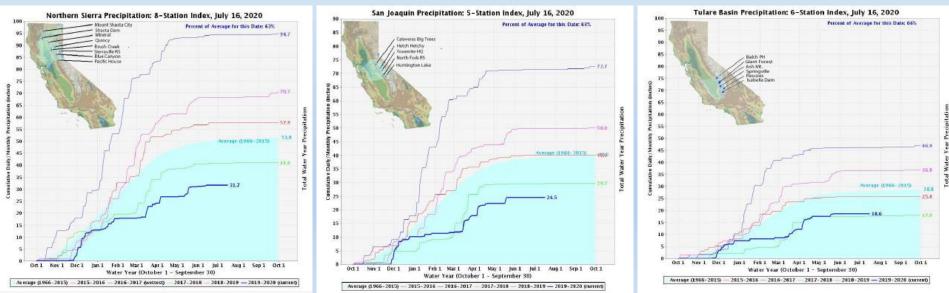

9 consecutive days of rise at WWBC1

Observed Date of Peak Flow/Inflo



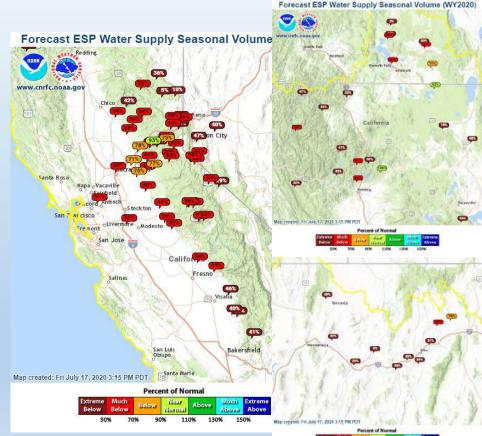
Mid-May storm

- Widespread precip along north coast and Sierra
 - Heaviest precip fell as rain
 - Snow levels fell late
 - Little accumulation below 8kft
- Some mountain streams and reservoirs observed highest flows of the AJ period.
 - SHDC1, ORDC1, NBBC1, EXQC1
- Many peaks similar to snowmelt peaks on May 31st/April 1st

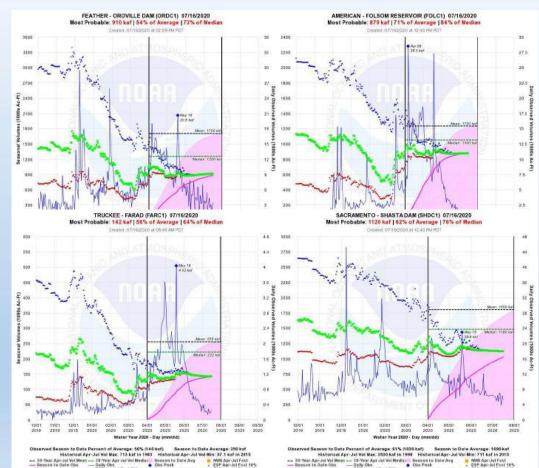


Water year precip summary

- All Sierra precip indices well below average
- San Joaquin and Tulare received more precip in MAM than DJF
 - Occurred 19 times in SJ and 17 in Tulare in last 98 years
 - Has only occurred 9 times in the northern Sierra

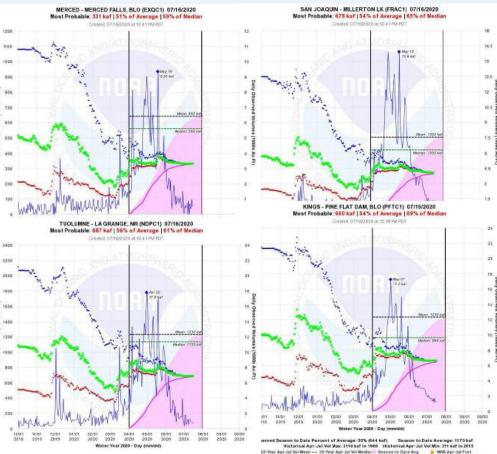

Figures courtesy of CA DWR

AJ runoff volume


- AJ runoff 50-60% of average throughout the Sierra
 - American highest at ~70%
 - Tulare basin the lowest at < 50%
- Extremely below average in the north coast and Humboldt basins

Sac basin AJ forecasts

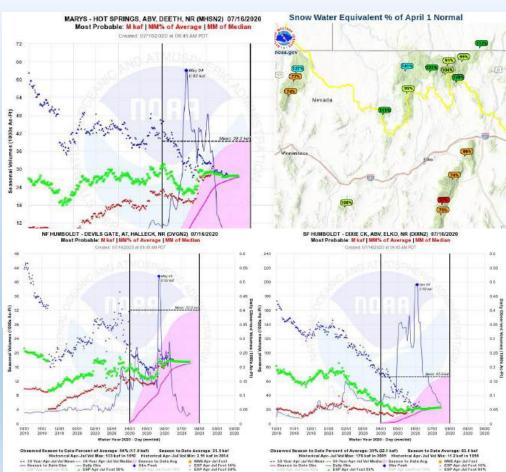
- AJ forecasts were good across northern CA watersheds
 All forecasts were
- All forecasts were slightly too high after mid-May storm, except ORDC1



San Joaquin AJ forecasts

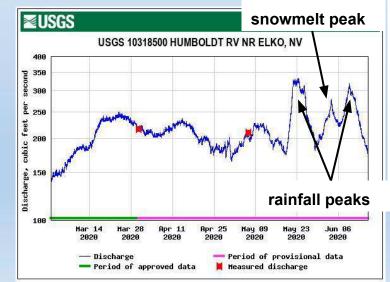
- AJ volumes were similar to April 1st forecasts
- Increases in AJ forecasts after April 1st did not materialize
 - Steady decline after the mid-May storms
 - AJ volumes were at or below mid-April 90% forecasts
- Dry soil conditions in middle zones coupled with less rain in the SJ may have led to overforecasts after mid-May storm

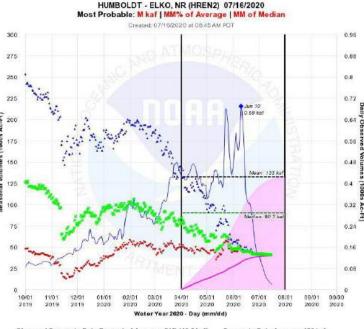
Gally Cho


Observed Season to Date Percent of Average: 37% (678 kaf) Season to Date Average: 1180 kaf Historicel Apr-Jel Vol Max: 2680 kaf in 1996 Historicel Apr-Jel Vol Mix: 301 kaf in 1977

Humboldt AJ forecasts

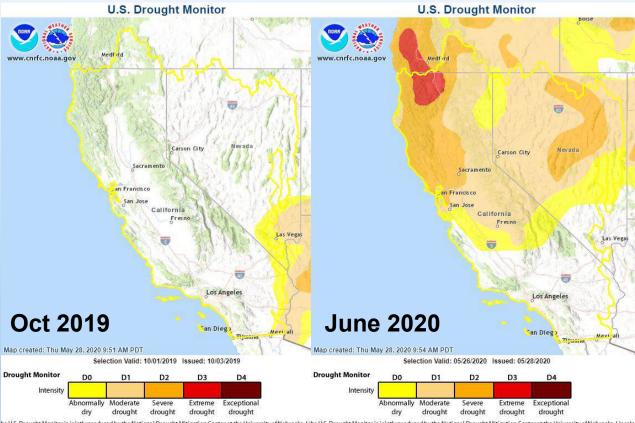
- Snowpack was above average in the NF of the Humboldt and Marys
 - Well below average in the Ruby Mnts
- Dry spring led to declining AJ runoff, but rebounded during Mid-May storm, especially in tribs above Elko




Where did the water go at Elko?

- AJ volume 50% of April 1st forecast
- MHSN2 + DVGN2 = 45kaf
 - HREN2 = 40kaf
- Volume loss downstream highlights dry Ruby mnts & losses from tribs during

routing


Observed Season to Date Percent of Average: 315 (400 Kkaf) Season to Date Average: 130 kaf Historical Apr-Jul Vol Max: 613 kaf in 1964 Historical Apr-Jul Vol Min: 6.15 kaf in 2013 -- 30-Year Apr-Jul Vol Mean -- 30-Year Apr-Jul Vol Media Season to Date Ave Season to Date Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Date Ave Season to Date Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Season to Date Aver Season to Date Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Season to Date Aver Season to Date Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Season to Date Aver Season to Date Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Season to Date Aver Season to Date Obs -- Daily Obs -- Daily Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Aver Season to Date Obs -- Daily Obs -- Date Aver Season to Date Obs -- Date Aver Sea

TIORR

Drought conditions

- Drought conditions developed in early spring, despite spring precip
- Drought most significant along the north coast through the Russian River basin
- Drought also developing in Humboldt

he U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of Nebraska-Line U.S. Drought Monitor is jointly produced by the National Drought Monitor is jointly produced by the National Drought Monitor is jointly produced by the Nat

Source: US Drought Monitor

Flood events

0.00

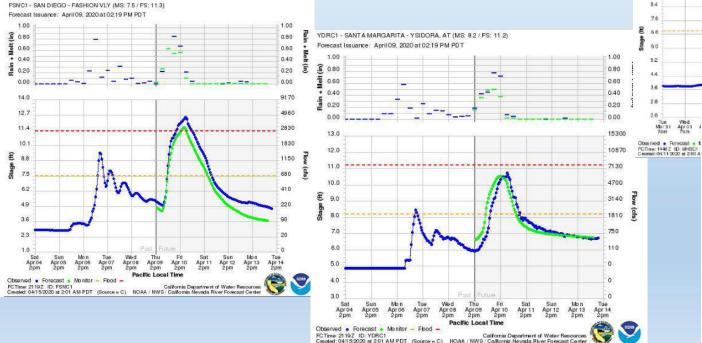
0.60

0.20

13450 10260

7500

5410


2310

1320

250

0.40

- FSNC1 only forecast point to reach flood stage
- Only a few locations reached monitor stage
- No weir flow on the Sac River

WOOCH - WE CARSON - WOODFORD'S ARS 125 / FS 115

m

MHRC1

£ 0.90

1 0.60

0.40

10.0

Wed

0.20

15.0

14.4

13.8

13.2

114

10.5

10.5

9.6

£ 128

COSUMNES - MICHIGAN BAR (MS: 7.0 / FS: 12.0) Forecast lecuance: April 05, 2020 at 07:48 AM P01