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1 Introduction
The purpose of this document is to help clarify how National Weather Service (NWS) Hydrologic
Ensemble Forecasts are generated at the CNRFC.  It is hoped that an increased understanding
of the fundamentals, process, and limitations will lead toward (1) more informed and appropriate
applications by users and (2) ideas for improvements and refinements by researchers and
collaborators.

Hydrologic forecasts provide value to a variety of sectors including flood management, reservoir
management, water resources management, hydropower, navigation, and recreation.
Historically, hydrologic forecasts have been single-value (deterministic) and of short duration (a
day or two) given the uncertainty in the weather forecast.  Improvements in weather forecast
skill has led to longer forecast durations (e.g. 5 days) in some locations.  Probabilistic forecasts
(usually regression based) have been restricted to seasonal volume forecasts associated with
snowmelt (e.g. April-July volume).

Over the past two decades it has become clear that water resource and emergency managers
need more than a single-value forecast.  They are managing the risks of their actions (or
inactions) and the associated costs.  Risk is the product of probability and consequence.  They
understand the consequences.  They need the probability.   They need probabilistic hydrologic
forecasts for short, medium, and long-range decision making.

Figure 1 - Forecast Use by Temporal Range

Probabilistic forecasts can be generated in multiple ways.  The most common are through error
propagation and through ensemble techniques.  For reasons associated with feasibility and
application, ensemble techniques have been the focus of the National Weather Service’s
development efforts for some time.  Progress has been attributable to a growing acceptance
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that uncertainty is something that can be leveraged to make more informed decisions (National
Research Council of the National Academies 2006) and substantial community support as
evidenced through the success of the Hydrological Ensemble Prediction Experiment (Schaake
et al. (2007), www.hepex.org).

Sources of uncertainty which contribute to uncertainty in the streamflow forecast include:
meteorology, hydrology, and flow regulation.  Assuming that the (1) hydrologic model is
well-conceived and well-calibrated, (2) observations used to drive the model are representative
and quality controlled, (3) the individual running the model is well-trained and experienced, and
(4) observed and near-term regulated flows are well-defined, then the majority of uncertainty in
CNRFC streamflow forecasts typically arises from the uncertainty in future weather (precipitation
and air temperature forecasts).

Figure 2 - Sources of Streamflow Forecast Uncertainty

The NWS effort to develop a methodology and toolset capable of generating reliable short,
medium, and long-range hydrologic ensembles began in about 2001.  Prototype efforts took
nearly 10 years to make their way into operations.  Today, the CNRFC uses the Hydrologic
Ensemble Forecast Service (HEFS) to issue forecasts daily at 285 locations (Figure 3).  HEFS
forecasts are operationally relied upon by water, emergency, environmental, hydropower, and
recreation managers to manage risk and improve outcomes.
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Figure 3 - CNRFC HEFS Forecast Locations
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2 Summary Points
The CNRFC uses the HEFS to construct meteorological ensembles from single-valued
forecasts. This process, known as statistical post-processing, leverages information from the
record of past forecasts and observations. Important aspects of this process as implemented at
the CNRFC, and characteristics of the resulting streamflow ensemble forecast, are listed below.

● The CNRFC hydrologic models require three meteorological inputs (hydrologic forcings)
for simulation of runoff. These are 1) precipitation, 2) surface (2 meters above the
ground) air temperature, 3) and freezing level. The CNRFC uses the HEFS to generate
ensemble forcings for precipitation and air surface temperature. Work is underway at the
CNRFC to configure the HEFS to also generate an ensemble forecast of freezing level.

● The precipitation and surface air temperature ensembles generated by the HEFS are
bias-reduced and exhibit consistent variability with respect to the record of forecasts.
Furthermore, the HEFS employs a method known as the Schaake Shuffle (Clark et al.,
2004) to ensure that the ensembles are temporally and spatially consistent across
locations.

● The CNRFC ensemble streamflow forecasts, which result from applying the ensemble
forecasts of precipitation and surface air temperature to the hydrologic models, reflect
meteorological uncertainty only. Hydrologic uncertainty is not accounted for.

● The CNRFC uses the HEFS to develop ensemble forcings on a 6-hour time step. The
forcings are applied to the hydrologic models at the elevation zone scale (one to three
zones per modeled subbasin). The CNRFC configures the HEFS to generate ensembles
spanning the first 28 days of the forecast. For morning (T0 = 12z) forecasts, the CNRFC
appends ensemble forcingss for days 29 to 365 generated outside of the HEFS using
raw climatology to support water supply forecasts.

● The HEFS consists of two primary components:  the Meteorologic Ensemble Forecast
Processor (MEFP), and 2) the Ensemble Postprocessor (EnsPost). The CNRFC uses
the MEFP, but does not run the EnsPost. The EnsPost is designed to modify streamflow
forecast ensemble members to minimize bias and incorporate uncertainty attributed to
hydrologic modeling. The CNRFC plans to test EnsPost pending completion of planned
improvements. A timeline for testing and implementation has not been established.
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3 Important Concepts
Before diving into details of how HEFS works and how it is applied at the CNRFC, several
prerequisite concepts are introduced in the following paragraphs.

Time of Forecast (T0)
The time at which the forecast portion of the hydrologic forcings begins is referred to as T0
(pronounced “T zero”). CNRFC issues regular forecasts once per day reflecting T0 = 12z during
summer, and twice per day (reflecting T0 = 12z, 18z) the rest of the year. Note that “z” indicates
time zone, which is UTC or “zulu” time.  During active weather CNRFC will issue forecasts as
often as four times per day (reflecting T0 = 12z, 18z, 00z, 06z). The times at which forecasts are
actually issued are typically 2 to 3 hours after the T0 reflected by the forecast. This is because
time is required to develop the CNRFC official single-valued forecast for the CNRFC region,
quality check hydrologic data, run hydrologic models and inspect results, and review bulletins.
Even though there is a 2 to 3 hour difference between T0 and when the forecast is issued, the
forecast is generally referred to by the T0 value it reflects. The CNRFC strives to issue all
forecasts (T0 = 12z, 18z, 00z, 06z) by 9am, 3pm, 9pm, and 3am local time respectively.

HAS Forcings and CNRFC Official Single-valued Forecasts
The CNRFC creates single-valued forcings, referred to as the “HAS forcings”, which are applied
to hydrologic models to produce the CNRFC official single-valued streamflow forecasts. The
forcings span 20 days, from T0 - 10 days to T0 + 10 days. A group of acronyms used to
reference the six basic components of HAS forcings are listed in Table 1. In these acronyms, Q
= quantitative, P = Precipitation. T = Temperature, Z = Freezing Level, E = Estimate, and F =
Forecast.

Table 1 - Acronyms for Portions of the HAS Forcings

An important point with respect to developing forcings for ensemble forecasts is that the only
portions of the HAS forcings used to create ensemble forcings are:

● Forecast portion:  days 1 - 3 of the HAS QPF,
● Observed portion:  all 10 days of the HAS QPE, HAS QTE, and HAZ QZE.
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Each of the six parts of the HAS forcings have unique data sources, which vary with forcing type
and day of forcing. These are summarized in Table 2.

Table 2 - Sources of HAS Forcings

WPC - Weather Prediction Center
NBM - National Blend of Models
GFS - Global Forecast System
ECMWF - European Center for Medium-Range Weather Forecasts
Hydro QC - CNRFC Hydrologic QC process (“prev.” = from previous forecast)
URMA - Unrestricted Real-time Mesoscale Analysis
RTMA - Real-time Mesoscale Analysis
HRRR - High-resolution Rapid Refresh

In order to provide a more complete picture of the CNRFC forecast process, details on how the
CNRFC single-valued forcings are developed is provided in the following paragraphs.

The 10-days of observed forcings are created as follows. On each day of forecast, the most
recent 6-hour periods (since the previous forecast), of gauge precipitation are quality checked
by the Hydro forecaster. These point values are normalized to the monthly Parameter-elevation
Regressions on Independent Slopes Model (PRISM) normals. The normalized values are then
distance-weighted to each precipitation grid cell, and then restored at each grid cell. The result
is a set of 6-hour precipitation grids reflecting observed precipitation at gage locations and
monthly PRISM patterns at grids in between. For surface temperature, grids from the URMA are
used for hours 24, 18, and 12, prior to T0. For hour 6 prior to T0, the temperature grid from the
RTMA is adopted. For freezing level, 6-hour grids from the HRRR are adopted. For the 9 days
prior, observed 6-hour grids from previous forecasts are used.

The 10-day CNRFC single-valued forcings (or HAS forecast) are created as follows. For
forecast days 1 - 3, during periods of quiet weather, precipitation grids from the NBM or WPC
guidance are typically adopted without changes. For forecast days 1 - 3, during periods of more
active weather, precipitation forecasts from the NBM or WPC guidance and current observations
are still considered, but with the HAS forecaster providing additional review and input. During
active weather, the HAS forecaster will typically review additional models, latest observations
from gages on the ground, radar, and satellite. The HAS forecaster uses the Graphical Forecast
Editor (GFE) software tool to display and edit NWP grids to create the final adjusted 6-hr
precipitation grids. GFE grid editing capabilities include:
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● Use grids from two different atmospheric models for two different time steps.
● Blend grids from two different models for the same time step.
● Manually edit grids to be more consistent with latest observations.
● Manually edit grids based on experience with model performance during past events.

.
For forecast days 4 - 6, the HAS forecaster usually adopts the precipitation grids from WPC
guidance, but has the option to do otherwise if the situation warrants. For forecast days 7 - 10,
precipitation grids from the NBM are adopted. Temperature forecasts (days 1 - 10) are based
solely on NBM guidance. For freezing level, the HAS forecaster creates a blend of GFS and
ECMWF grids for days 1 - 6. For days 7-10, GFS freezing level grids are adopted. With 6-hour
forcing grids for precipitation, surface temperature and freezing level defined for the full 20-day
simulation period, zone-average values are then extracted to obtain the HAS forcings required
to execute the hydrologic models.

During operations, the HAS forcings are applied to the hydrologic models. The Hydro forecaster
inspects the results of the simulation, primarily by comparing recent simulated flows against
observed flows. Occasionally the Hydro forecast will apply a “modifier” to the model to improve
model performance. Modifiers can be made to model states, parameters, or time series
(including forcings). Modifiers can be applied during the HAS forecast or in simulations outside
of operations, such as update states simulations. As long as a modifier has not expired, it will be
applied in the next operational forecast. With the HAS forcings applied, and the hydrologic
models run and results reviewed, the CNRFC official single-valued streamflow forecast is
issued.

Hydrologic Models
Hydrologic models are used to transform the 6-hour forcings of mean areal precipitation, air
temperature, and rain/snow elevation into subbasin runoff. Air temperature is the
areally-averaged value at 2 meters above the elevation of the centroid of the modeled area.
Rain/snow elevation is at the elevation of the centroid. The first 10-days of forcings, prior to T0,
reflect observations. For all subbasins, the forecast portion of the forcings, after T0, are the HAS
forecast when producing the CNRFC official single-valued streamflow forecasts, and
multi-valued (ensemble) for when producing ensemble streamflow forecasts.

Each modeled area is a subbasin elevation zone, with snow accumulation/melt processes and
soil moisture/runoff  processes modeled independently in each. Each CNRFC subbasin is
composed of up to 3 such zones, depending on the elevation range of the subbasin. Typically,
each elevation zone consists of the subbasin area at:  0 to 5,000 ft, 5,000 to 8,000 ft, or greater
than 8,000 ft. As such, the zones are separated by the 5000 ft and 8,000 ft elevation contours.
An example of elevation zones is shown in Figure 5.

Within each subbasin, each elevation zone is represented by a SNOW-17 (Anderson, 1976)
model and a SAC-SMA (Burnash, 1973) model. SNOW-17 and SAC-SMA models are
continuous simulation models. Model states of both models are saved with each simulation
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(forecast), and provide initial states for the next forecast. SNOW-17 is a one-dimensional
conceptual temperature-index model, but includes a simplified energy budget solution for rain
on snow conditions. The inputs to SNOW-17 are the three forcings for the elevation zone, and
the output is a depth time series of rain on the relative portion of non-snow covered area plus
melt from the relative portion of snow covered area. This areal average “rain + melt” depth
series for the elevation zone is input to the SAC-SMA model. SAC-SMA is a one-dimensional
lumped-parameter conceptual soil moisture model, in which subsurface storage in upper and
lower soil layers is represented by a system of connected storage tanks spanning both layers.
The resulting area-average runoff depth time series for each zone is then computed.

The runoff depth series for all elevation zones are then weighted by zone area to obtain the
areal average runoff depth series for the subbasin. This series is then transformed, by a unit
hydrograph representing the subbasin area, to obtain the simulated runoff hydrograph for the
subbasin. At many locations in the CNRFC system, the unit hydrograph is used to change
6-hour SAC-SMA runoff depth series to a 1-hour streamflow series. This is helpful for calibrating
to and forecasting peak flows in fast-responding watersheds.

If quality-checked streamgage data are available at the subbasin outlet, the observed
hydrograph is merged with the simulated runoff hydrograph before routing downstream. Rather
than an abrupt step from observed to simulated, a transition time, unique for each location, is
used to blend the flows. The hydrologic forecaster compares simulated and observed and runoff
hydrographs to assess hydrologic model performance, and when warranted, will make
adjustments to model parameters, states, or related time series.

Components of the HEFS
The HEFS has two primary components:  1) the Meteorologic Ensemble Forecast Processor
(MEFP), and 2) the Ensemble Postprocessor (EnsPost). Each of these also has a parameter
estimator (PE) component: the MEFPPE and EnsPostPE, respectively. These components and
their position in the forecast sequence are shown in Figure 4.

The MEFP is used to generate meteorologic ensemble forecasts of precipitation and
temperature which display historically consistent bias correction and spread. Outside of the
HEFS, these ensembles are used to force the hydrologic models, which results in streamflow
forecast ensembles. At this point in the process, the streamflow ensembles will reflect any
biases in the hydrologic models, and will display no uncertainty due to the hydrologic models.

Though not presently used at the CNRFC, the EnsPost is designed to be executed once the
streamflow ensemble forecast has been created by the MEFP. The EnsPost adjusts the
streamflow ensembles to reduce bias and incorporate uncertainty (spread) attributed to
hydrologic initial states, parameters, and modeled processes. The resulting streamflow
ensembles would then reflect minimal bias (both meteorological and hydrologic) and exhibit
historically consistent spread reflecting meteorologic and hydrologic uncertainty.  Note that the
CNRFC does plan to test EnsPostPE and EnsPost components in the future, once further
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Figure 4 - Components of the HEFS as implemented at the CNRFC (May 2022)
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refinements have been incorporated to the components.

MEFP Single-valued Inputs and Spatial Resolution
The CNRFC has configured the MEFP to use two single-valued current forecast series, one for
precipitation and the other for air temperature, spanning forecast days 1 through 28. Each
6-hour single-valued series is generated from 6-hour forecast grids. Days 1 - 3 of the
precipitation forecast are defined by the HAS QPF. All other portions of the MEFP single-valued
inputs are defined by the mean of the GEFSv12 ensemble. Table 3 lists the sources of these
grids and spatial resolution.

Table 3 - Spatial Resolution of Forecast Grids

Six-hour values, areally-averaged over each subbasin elevation zone, are computed by
weighting grid cell values contained by, or overlapping, each elevation zone. The result is a
6-hour single-valued meteorological forecast time series for each elevation zone. These are the
MEFP single-valued inputs. Figure 5 shows grid cell outlines overlaying CNRFC basins and
basin zones for a region in the Northern Sierra. In this region, higher elevation subbasins are
composed of two elevation zones, while lower elevation subbasins are defined by a single
elevation zone. In this region, the 5,000 ft elevation contour separates lower and upper
elevation zones.
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Figure 5 - Forecast Grids Overlaying CNRFC Basin Zones
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4 Steps for Creating the CNRFC Ensemble Forecast

Overview of Method
The HEFS employs statistical postprocessing to develop ensembles of 6-hour time series of
precipitation and air temperature (2 meters above ground surface). These ensembles, often
referred to as the “hydrologic forcing ensembles”. Outside of HEFS, the ensembles are applied
to the hydrologic models. A third forcing series, the rain/snow elevation, is also applied to the
hydrologic models, but only as a single-valued series. The hydrologic models are then
simulated, n times, with n being the number of members in each ensemble. Each simulation
computes subbasin runoff, and also routes and combines streamflow hydrographs. This results
in an ensemble of simulated streamflow hydrographs at each location in the hydrologic
modeling system. At locations which are deemed by CNRFC as official ensemble forecast
locations, the streamflow ensembles are post-processed to generate probabilistic forecast
information in various formats.

Developing the ensemble forecasts begins with the MEFPPE, which computes statistical
distribution parameters relating past forecast values to observations, for a collection of forecast
time windows (canonical events). This is done only once as part of configuration of the HEFS.
During operations, the MEFP requires as input the two 6-hour single-valued current forecast
series, one of precipitation and one of air temperature, extracted from the 6-hour grids in Table
3. These two series must exist for every elevation zone in the system. For each canonical event,
the MEFP extracts from the single-valued forecast series the value of the canonical event, and
uses it as the condition for defining the distribution of observations associated with that forecast
value. The conditional distribution is quickly generated on-the-fly, because the parameters which
define the distribution have been previously stored by the MEFPPE. For each canonical event,
the MEFP draws n samples from the corresponding conditional distributions, where n is the
desired number of ensemble members to create. It is at this step in the process that bias in the
single-valued forecast series is minimized, because the sampled distributions represent
observations. The samples drawn from the distributions also reflect historically-consistent
spread, because they are drawn using stratified sampling, and again representing observations.
For both forcing types, the MEFP inputs the samples to a process known as the Schaake
Shuffle, which is configured by the CNRFC to generate the meteorologic ensemble forecasts of
elevation-zone precipitation and air temperature for forecast days 1 - 28. The Schaake Shuffle
also leverages historical event patterns to generate ensembles that are spatially and temporally
consistent across subbasins. The CNRFC uses these 28-day ensemble forecasts to generate
ensemble streamflow forecasts at forecast times of T=12z, 18z, 00z, and 06z. For 12z
forecasts, which are issued every day, the CNRFC appends ensemble forecast forcings for days
29 - 365, resulting in a 365-day ensemble forecast. The appended portion of the T=12z forecast
is not generated by the HEFS, but is generated by the CNRFC using raw climatology.

The following sections describe how the MEFP component of the HEFS creates ensemble
forecasts of air temperature and precipitation at the CNRFC. The presentation here is intended
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to provide the reader with a basic understanding of the process. For those seeking greater detail
on the process, references are provided.

Preparatory steps performed once, as part of the HEFS configuration, include:

A. Collect Supporting Data
B. Define Canonical Events
C. Compute Statistical Parameters

Operational steps performed for each ensemble forecast include:

D. Extract Current Forecast Inputs
E. Generate Conditional Probability Surfaces
F. Generate and Sample Conditional Probability Distributions
G. Generate Forcings Ensembles (Schaake Shuffle)
H. Extend Ensembles to 365 days using Climatology
I. Apply Forcings Ensembles to Hydrologic Models

Steps A, B, & C - Preparation

A - Collect observed and past forecast data
Historical data used to calibrate the hydrologic models are listed in Table 4. The first three rows
provide sources of the three observed forcings. As indicated in the third column, more than one
source was needed to complete the period of record for precipitation and freezing level. CNRFC
creates precipitation grids from GHCN gage data for the early portion of the precipitation record.
For the later portion CNRFC uses the archived operational HAS QPE grids. Observed
temperature grids from NOAA’s Analysis of Record for Calibration (AORC) are used for the full
calibration record. Freezing level is shown as “computed” because the majority of the record is
based on NWP models. In 2019, CNRFC began using archived operational HAS QZE grids to
extend the freezing level record. Observed streamflow data are not used by HEFS, but are
listed for completeness as a needed data component for hydrologic models calibration.
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Table 4 - Observed Data Sources

GHCN - Global Historical Climate Network
QPE - CNRFC Quantitative Precipitation Estimate
AORC - NOAA Analysis of Record for Calibration
ERA5 - ECMWF Reanalysis version 5
GFS - Global Forecast System
QZE - CNRFC Quantitative Freezing Level Estimate
USGS - United States Geological Survey

Table 5 lists sources of past forecast data for calibrating the MEFP. Past forecasts can be
historical forecasts or hindcasts depending on data source. Hindcasts of short-term (days 1 - 3)
precipitation are challenging to develop because the forecast process can be complex for active
weather situations and involve expert judgment that cannot be replicated by a computer
program. In order to address this challenge, CNRFC uses historical HAS QPF forecasts from
water years 2010 - 2021 for the first 3 days of precipitation forecasts.

Table 5 - Sources of Past Forecast Data
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B - Define Canonical Events
Canonical events are a set of time windows within forecast days 1 - 28. The motivation for using
canonical events is to capture the skill in the forecast precipitation and temperature at different
temporal scales. The MEFPPE uses canonical events to compute statistical parameters relating
past forecasts to observations. The MEFP uses canonical events to extract canonical event
values from the current single-valued forecasts, and ultimately to generate the ensemble
forecast series.

A unique set of canonical events is defined for precipitation, and another for air temperature.
Each canonical event is defined by a duration (aggregation period) and a lead time relative to T0.
The value assigned to a precipitation canonical event is simply the total precipitation amount
during the event. For temperature canonical events, two values are of interest:  a representative
maximum value (Tmax) and a representative minimum value (Tmin). Tmax and Tmin are
described further in E1.

There are two types of canonical events:  base events and modulation events. Base events do
not overlap and have no gaps in between. Modulation events span multiple base events and
can overlap one another. At the CNRFC, precipitation is represented by 35 base and 8
modulation events. Temperature is represented by 14 base events and 0 modulation events.
The total number of canonical events used to represent precipitation and temperature for the
first 28 days of the ensemble forecast is therefore 57. The sequence and duration of these
events are shown in Table 6 for precipitation and in Table 7 for temperature.

Table 6 - Canonical Events for Precipitation

15



Table 7 - Canonical Events for Temperature

C - Compute Statistical Parameters
The HEFS uses statistical parameters to describe the relationships between past forecasts and
observations. For temperature, the five parameters listed below are computed for each
canonical event by the MEFPPE and saved for operational use by the MEFP.

𝜇x = mean of observations
𝜎x = standard deviation of observations
𝜇y = mean of past forecasts
𝜎y = standard deviation of past forecasts

= Pearson’s product-moment correlation coefficientγ

Together, the 5 parameters can be used to define a joint probability surface, with the first pair of
parameters defining the marginal distribution of observations and the second pair defining the
marginal distribution of past forecasts. The fifth parameter defines how well observations are
predicted by forecasts.

In order to compute the 5 parameters, the MEFPPE extracts data pairs of forecasts and
observations (of precipitation and air temperature) for each available past forecast. For each
past forecast, one data pair will be extracted for each canonical event. Next, the MEFPPE pools
the extracted data pairs. The CNRFC has configured the MEFPPE to create a pool of data pairs
for every 5th calendar day, using 61-day windows. Suppose the first day for which parameters
are to be computed is January 1. Then for each canonical event, the MEFPPE pools all data
pairs having forecast calendar days within plus or minus 30 days (a 61-day window) of January
1. If a past forecast is available for each day, then the number of data pairs for each canonical
event will be equal to 61 times the number of years of past forecasts (11 for HAS QPF, 41 for
GEFS). For each canonical event, the 5 parameters are then computed and saved. The
MEFPPE then advances the 61-day time window by 5 days, and repeats the process to
compute and store the 5 parameters associated with January 6. The process is repeated until
the 5 parameters have been computed and stored for every 5th day of the calendar year.
Operationally, the MEFP adopts the parameter set corresponding to the “5th day” nearest to the
current forecast day.
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Steps D, E, F, G, & H - Operational Forecasts with HEFS

D - Extract Current Forecast Inputs
For each basin elevation zone, three 6-hour single-valued series representing the current
forecast are required by the MEFP: precipitation, maximum air temperature, and minimum air
temperature. These series are created by extracting 6-hour values from forecast grids.  Sources
for the current single-valued forecast series are listed in Table 5. Below, Table 8 shows for
precipitation the temporal position of base (grey shading) and modulation (blue or yellow
shading) canonical events. Table 9 shows for maximum and minimum temperature the temporal
position of base events (grey shading). For temperature there are no modulation events. For
each canonical event, the MEFP extracts the values for all canonical events from the 6-hour
single-valued input series. Canonical event values for precipitation are simply the total
precipitation during the event window. Computation of canonical event values of temperature is
described in E1. Note in Tables 8 and 9 that each breaks the 28-day MEFP forecast period into
days 1 - 14 in the upper half and days 15 - 28 in the lower half.

Table 8 - Current Forecast Canonical Inputs - Precipitation

Table 9 - Current Forecast Canonical Inputs - Temperature

It is critical that past forecast sources used by the MEFPPE to compute statistical parameters
are consistent with current forecast sources. This is because the MEFP will use the statistical
parameters to describe the bias and uncertainty associated with the current forecast canonical
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values. Table 10 shows that past forecast sources (Table 5) and current forecast sources
(Tables 8 and 9) are consistent.

Table 10 - Consistency of Forecast Sources

E - Generate Joint Probability Distributions and Conditional Probability
Surfaces
In this document, the term “conditional probability surface” refers to the mathematical surface
that is obtained when a joint probability surface (observations vs. forecasts) is divided by the
marginal distribution of forecasts. The resulting surface, when sliced at a forecast value, always
yields a conditional probability distribution with area of 1.0. The shape of the surface reveals the
effect that the magnitude of the forecast has on the conditional distribution of observations.

A detailed mathematical description of the procedures implemented by MEFP is provided by
Herr and Krzysztofowicz (2005) and Lu et al (2011). This section applies parts of that procedure
to example data sets of temperature and precipitation, and intentionally tries to avoid the more
advanced topics in the reference paper. The description here is intended to visually illustrate
how conditional probability surfaces for temperature and precipitation are created. In the next
section, the process by which these surfaces are used by MEFP during forecast operations is
described.

E1 - Temperature
As configured by the CNRFC, temperature canonical events can consist of 24-hour (12z to 12z),
or n x 24-hour time windows. For each canonical event, representative maximum and minimum
temperature values (Tmax and Tmin) are of interest. For forecasts, Tmax and Tmin are
instantaneous values. For observations, Tmax and Tmin are 6-hour average values for periods
18z-00z and 06z-12z. This is because, as configured at CNRFC, instantaneous forecast values
are used from forecasts (past and current), while hydrologic models are forced with 6-hour
average temperature time series.
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Figure 6 - Data Pairs and Confidence Intervals (Tmax)

Figure 7 - Marginal Distributions and Data Bins (Tmax)
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For 24-hour canonical events, all 6-hour observed values (18z-00z and 06z-12z) and
instantaneous forecast values are computed  from the 24-hour period. For n x 24-hour canonical
events, all 6-hour observed values (18z-00z and 06z-12z) and instantaneous forecast values
within the canonical event are set to the averages of values computed for each 24-hour period
within the canonical event.

As a result, two joint probability distributions are needed:

1. One relating observed 18z-00z Tavg to forecast Tmax, and
2. One relating observed 06z-12z Tavg to forecast Tmin

Marginal Distributions
In this example, a 1-day canonical event temperature hindcast data set of 594 data pairs for the
upper basin of North Fork Dam of the American River is plotted in Figure 6. The extracted data
are for December 27 (12z to 12z). Each data pair consists of an x and y value in which x is the
past forecast instantaneous maximum value Tmax, and y is the observed 6-hour average value
Tavg for 18z - 00z.  A normal distribution is fit to each sample group to obtain the two resulting
marginal distributions, f(x) and g(y). These are shown in Figures 7a and 7b. Data bins are also
shown for comparison.

Joint Probability Distribution
For one canonical event, the bivariate normal density function (Equation 1) is used to estimate
the joint probability distribution h(x,y) of observations (y) and past forecast canonical event
inputs (x). h(x,y) is completely defined by the four marginal parameters: 𝜇x , 𝜎x , 𝜇y , 𝜎y , and
correlation coefficient . The five parameters are computed directly from the samples. γ

Equation 1

in which:

= joint probability distribution (in this case bivariate normal)ℎ(𝑥, 𝑦)
𝜇x = sample mean of past forecasts (x)
𝜎x = sample standard deviation of past forecasts (x)
𝜇y = sample mean of observations (y)
𝜎y = sample standard deviation of observations (y)

= Pearson’s product-moment correlation coefficientγ
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Computed values of the 5 parameters for this example are 𝜇x = -3.37, 𝜎x = 4.17, 𝜇y = -1.48,
𝜎y = 3.84, and = 0.80.  The resulting joint probability surface, h(x,y), is shown in Figure 8:γ

Figure 8 - Joint Probability Surface (Tmax)

A useful property of the bivariate normal distribution is that the dependence structure between x
and y is linear and requires computation of only one additional parameter, , from the data. Asγ
shown by Equations 2a and 2b, the conditional mean value of y is a straight line, and the
conditional standard deviation of y is a constant. These properties represent the change in
distribution of observations with respect to forecast value for one canonical event.

Equations 2a and 2b

in which:

= mean of observed values y given that forecast ,𝑥 = 𝑥
𝑜

= standard deviation of observed values y given that forecast .𝑥 = 𝑥
𝑜
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Conditional Probability Surface
While the joint probability surface is informative, it is the conditional probability surface, given by
Equation 3, that we are most interested in.

Equation 3

= ,ℎ(𝑦|𝑥)
ℎ(𝑥,𝑦)
𝑓(𝑥)

In Equation 3, is the marginal distribution of past forecast samples. We are in effect𝑓(𝑥)
normalizing the joint probability surface to the marginal distribution of past forecasts. The
resulting conditional probability surface for this example is shown in Figure 9.

Figure 9 - Conditional Probability Surface (Tmax)

This surface clearly reflects the dependence structure defined by Equations 2a and 2b (see
confidence intervals in Figure 6).  When this surface is “sliced” with a y-z plane at a selected x
value, the resulting intersection is a normal distribution. If a different value of x is chosen for the
slice, the same distribution will result, but will be shifted in the y direction. Note that when the
surface was developed, the x axis represented the past forecast canonical input value, but when
used operationally, the x axis represents the current forecast canonical input value. For this
reason, consistency between current and past forecast sources is essential, as indicated in
Table 10.

For the canonical event represented by Figure 9, if the current forecast canonical input value
were a maximum temperature (Tmax) of 10 deg C, then the conditional normal distribution
associated with that value defines the corresponding range of uncertainty of the 18z-00z
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average temperature (Tavg) forecast. Following the above steps, another surface for the Tmin
case would also be developed from data pairs of Tmin and  06z-12z Tavg.

E2 - Precipitation
Unlike temperature, precipitation is intermittent. Properly accounting for the probability of both
rain and non-rain conditions is a mixed distribution problem. The MEFP provides two options for
computing mixed distribution statistics:  1) Explicit Precipitation Intermittency Treatment (EPT)
described in Herr and Krzysztofowicz (2005) and Wu et al. (2011), and 2) Implicit Treatment
(IPT) described in Wu et al. (2011). For short lead times the differences between IPT and EPT
methods are small, while EPT is much more skillful for longer lead times.  For this reason, the
EPT method is used at the CNRFC.

For simplicity, this document does not attempt to describe the details of mixed distribution
computations, but instead focuses on the “wet-wet” case. In this example, the CNRFC
configured a value of 0.254 mm as the minimum 3-day precipitation value considered non-zero.

Marginal Distributions
An example data set of 952 wet-wet data pairs for the upper basin of North Fork Dam of the
American River is plotted in Figure 10. The extracted data are for December 7 (center of 61-day
extraction window). Each data pair reflects precipitation over a 3-day time period starting at T0.

The CNRFC configures MEFP to use the gamma distribution to describe each of the two
marginal distributions: for forecast values (x), and for observations (y). Each gamma𝑓 𝑥( ) 𝑔 𝑦( )
distribution is defined by two parameters:  the shape factor (𝛼) and the scale factor (𝛽). The
density function form of the gamma distribution is shown in Equation 4.𝑓 𝑥( )

Equation 4

in which: x = forecast value
𝛼 = shape factor
𝛽 = scale factor
𝛤(𝛼) = gamma function

Estimates of 𝛼 and 𝛽 are computed from the sample mean (𝜇) and sample standard deviation

(𝜎), as shown in Equations 5a and 5b. Corresponding values of and are also computedα
𝑦

β
𝑦

for .𝑔 𝑦( )
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Figure 10 - Data Pairs and Confidence Intervals of “wet-wet” Precipitation)

Figure 11 - Marginal Distributions of “wet-wet” Precipitation

24



Equations 5a and 5b

= shape factor for 𝑓 𝑥( )

= scale factor for 𝑓 𝑥( )

The resulting two marginal distributions, f(x) and g(y), are shown in Figures 11a and 11b. Data
bins are also shown for comparison. The computed Pearson’s product-moment coefficient (𝛾) is
0.882 (in x-y space).

Joint Probability Distribution
If precipitation data were fairly normally distributed, then the same approach as for temperature
could be taken for generating the joint probability surface and conditional probabilityℎ(𝑥, 𝑦)
surface . Instead, the HEFS uses the normal quantile transform (NQT) to transform theℎ(𝑦|𝑥)
forecast (x) and observed (y) values into more normally distributed data sets of u and v. The
NQT iis defined by Equations 6a and 6b.

Equations 6a and 6b

and𝑢 = 𝑁𝑄𝑇(𝑥) = 𝑄−1(𝐹(𝑥)) 𝑣 = 𝑁𝑄𝑇(𝑦) = 𝑄−1(𝐺(𝑦)) 

in which
= normal quantile transform𝑁𝑄𝑇()

= inverse of cumulative standard normal distribution          𝑄−1( )

= cumulative marginal distribution of x𝐹(𝑥)

= cumulative marginal distribution of y𝐺(𝑦)
= forecast value      𝑥
= observed value      𝑦

u-v data pairs are plotted in Figure 12, and marginal distributions of and are plotted in𝑢 𝑣
Figures 13a and 13b.
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Figure 12 - Data Pairs and Confidence Intervals of Transformed “wet-wet” Precipitation

Figure 13 - Marginal Distributions of Transformed “wet-wet” Precipitation
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The bivariate standard normal distribution (Equation 7) is then fit to the collection of u-v data
pairs. The distribution has only one parameter, Pearson’s product-moment correlation
coefficient, , computed from transformed values. For this example = 0.851.γ γ

Equation 7

The resulting bivariate standard normal distribution for this example  is shown in Figure 12.

Figure 14 - Bivariate Standard Normal Surface

The linear dependence structure between v as a function of u is given by Equations 8a and 8b,
which are analogs of Equations 2a and 2b. The only parameter required is , computed fromγ
transformed data values.

Equations 8a and 8b

in which:

= mean of observed values v given that forecast 𝑢 = 𝑢
𝑜

= standard deviation of observed values v given that forecast 𝑢 = 𝑢
𝑜
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The surface is then back-transformed from u-v space to x-y space to obtain theℎ(𝑢, 𝑣)
bivariate meta-Gaussian distribution . This is done using Equation 9 below. which isℎ(𝑥, 𝑦)
equation 19 in Herr and Krzysztofowicz (2005). In so doing, the original marginal distributions
are enforced, and the dependence structure, linear in the u-v domain, becomes non-linear in the
x-y domain.

Equation 9

in which:

= joint probability distributionℎ(𝑥, 𝑦)
= bivariate meta-Gaussian distribution𝑚𝑔(𝑥, 𝑦)
= standard normal density function 𝑞( )
= inverse of cumulative standard normal distribution function          𝑄−1( )
= cumulative marginal distribution of forecast value (x)𝐹(𝑥)
= cumulative marginal distribution of observed value (y)𝐺(𝑦)
= marginal probability density function of forecast value (x)𝑓(𝑥)
= marginal probability density function of observed value(y)𝑔(𝑦)

In Equation 9, as the gamma functions and are each defined by shape and scale𝑓(𝑥) 𝑔(𝑦) 
parameters, the total number of parameters required to define is five:  𝛼x , 𝛽x , 𝛼y , 𝛽y ,ℎ(𝑥, 𝑦)
and . The computed values of these parameters for this example are: 𝛼x = 0.54, 𝛽x = 41.6, 𝛼y= γ
0.86, 𝛽y = 47.3, and 𝛶= 0.882 (0.851 in u-v space). The resulting surface, is shown inℎ(𝑥, 𝑦),
Figure 15.

Figure 15 - Joint Probability Surface (Precipitation)
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The conditional probability surface for the canonical event is obtained from Equation 3.ℎ(𝑦|𝑥)

Equation 3 (repeated)

=ℎ(𝑦|𝑥)
ℎ(𝑥,𝑦)
𝑓(𝑥)

Equation 3 for this example is shown in Figure 16.

Figure 16 - Conditional Probability Surface (Precipitation)

This surface reflects the back-transformed dependence structure defined by Equations 8a and
8b (confidence intervals are shown Figure 10).  Note that when the surface was developed, the
x axis represented the past forecast value, but when used operationally, the x axis represents
the current forecast value. For this reason, consistency between current and past forecast
sources is essential, as indicated in Table 10.
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F - Generate and Sample Conditional Probability Distributions
With conditional probability surfaces defined (Figure 9, Figure 16), MEFP “slices” each surface
at the corresponding current forecast canonical input value.  The slice reveals the conditional
distribution of observations associated with the current forecast value. The conditional
distribution is inherently bias-corrected and reflects historically consistent spread, because it is a
distribution of observations (not past forecasts).

When sampling the conditional probability distributions (slices), the cumulative form of the
distribution, HY|X(y|x) is used. HY|X(y|x) is given by Equation 10, which is Equation 20 in Herr
and Krzysztofowicz (2005).

Equation 10

in which:

HY|X(y|x)= cumulative conditional probability distribution
Q (   ) = cumulative standard normal distribution function
Q-1(   ) = inverse of cumulative standard normal distribution function

= cumulative (gamma) distribution of forecast value (x)𝐹(𝑥)
= cumulative (gamma) distribution of observed value (y)𝐺(𝑦)

Sampling is done using equally spaced increments of cumulative probability along the vertical
H(y|x) axis. The values of non-exceedance probability (NEP) used for sampling are given by
Weibull plotting plotting positions, which are defined by :

Equation 11 NEP = r / (n + 1)

where: NEP = non-exceedance probability (Weibull plotting position)
r = rank of sample (from largest to smallest)

n = sample size

Note that the maximum value of NEP computed by NEP is less than 1.0 and the minimum value
of NEP is greater than 0.

F1 - Precipitation
Using the conditional probability surface developed for precipitation in the previous section,
Figure 17a shows the conditional probability surface for precipitation from Figure 16, with two
colored curves indicating slicing the surface at two hypothetical current forecast canonical input
values of 25 and 200 mm on the x axis. The resulting magenta curve is the conditional
probability distribution given a current forecast value of 25 mm, and the resulting blue curve is
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the conditional probability distribution given a current forecast value of 200 mm. The resulting
difference in mean and spread of the conditional distributions is seen in Figure 17b. Figure 17c
shows the cumulative form, H(y|x), of the same distributions. Note that during operations, only
one current forecast canonical input value, and therefore only one conditional probability
distribution, is produced for each canonical event.

a

b c

Figure 17 - Conditional Probability Distributions for One Canonical Event (precipitation)
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At the CNRFC, the MEFP generates ensemble forcings spanning forecast days 1 - 28, for all
forecast times. For the morning (T0=12z) forecast only, the CNRFC also computes ensemble
members from raw climatology for forecast days 29 - 365). In creating the raw climatology
portion of the ensemble forecast, the number of ensemble members is 41. In order to have the
MEFP generate the same number ensemble members for forecast days 1 - 28, 41 samples are
drawn from the cumulative conditional probability distribution for each canonical event.

The samples must be drawn so as to be unbiased, in order that the resulting distribution of
samples is reflective of the original continuous distribution. It is also desirable that the sampling
method is repeatable. To satisfy these requirements, the MEFP draws samples from the
cumulative form of the conditional probability distribution. Figures 18a and 18b illustrate
drawing 41 samples from cumulative probability distributions corresponding to hypothetical
current forecast canonical input values of 25 mm and 200 mm. The resulting sample values are
indicated on the horizontal axes.

Forecast = 25 mm                                    Forecast = 200 mm

a b

Figure 18 - Sampling of Conditional Probability Distributions (precipitation)
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F2 - Temperature
The process for generating conditional probability distributions for temperature is fundamentally
the same as for precipitation, but for each canonical event two surfaces are required:

● Tmax forecast vs 18z-00z Tavg observed (example shown in Figure 9).
● Tmin forecast vs  06z-12z Tavg observed.

Operationally, MEFP would “slice” each surface at their respective forecast values, and two
samples drawn by stratified sampling:  one sample of 41 Tmin values and one sample of 41
Tmax values.

Figure 9 (repeated) - Conditional Probability Surface (Tmax)

G - Create Hydrologic Ensemble Forcings  (Schaake Shuffle)
Samples drawn from the conditional probability distributions for all canonical events are input to
a procedure known as the Schaake Shuffle. The procedure is a simple and efficient method
used to preserve the space-time statistical properties of climatology among multiple
hydro-meteorological variables across multiple forecast locations for ensemble forecasting. For
this application at CNRFC, once MEFP has drawn the 41 samples from each conditional
probability distribution for each canonical event for a forcing type, the Schaake Shuffle
transforms the samples into a 41-member ensemble spanning 28 days.
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G1 - Precipitation
Beginning with precipitation, it is useful to organize the sample as shown in Table 11. Note that
column width does not reflect canonical event duration. The top row provides an arbitrary id
number for each canonical event. Precipitation is represented by 35 base events and 8
modulation events. The first column contains an arbitrary number id for each sample. Each
column represents the individual sample values drawn from the conditional probability
distribution for the canonical event represented by the column. Data values, shown as “b” and
“m”, represent base event and modulation event sample values. The last row contains the
correlation coefficients (between observed and past forecast samples) for each canonical event.
These values are indicated by “c”. The canonical event values represent accumulated
precipitation during each canonical event.

Table 11 - Precipitation Samples for Schaake Shuffle (Forecast Days 1 - 28)

The Schaake Shuffle ranks base events extracted from the 41-year historical record, and
assigns year labels to the base events of corresponding rank.  A detailed example of the
Schaake Shuffle applied to precipitation is provided in the attachment “Schaake Shuffle
Step-by-Step Example”. If there were no modulation events, each set of base events having
matching year labels would be merged to form the set of  ensemble members (this is how it is
done for temperature). However, precipitation has modulation events, which overlap base
events and sometimes other modulation events. To handle this, the Schaake Shuffle considers
all (base and modulation) events, in order from lowest correlation to highest. Typically,
modulation events will have higher correlation, and will apply after base events, thus
“modulating” the base events. When a modulation event is considered, base events contained
by the modulation event are adjusted to be consistent with the modulation event.

G2 - Temperature
As described in E1 - Temperature, conditional probability distributions that relate Tmax forecasts
and Tmin forecasts to Tavg (18z to 00z) and Tavg (06z to 12z) observations respectively, for
each day of the forecast, are used to construct the temperature ensemble. For the two 6-hour
periods not addressed (00z to 06z, 12z to 18z), the MEFP interpolates to fill gaps. This is shown
in Table 12.
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Table 12 - HEFS Processing of Temperature (Tmin and Tmax)

Time

Time
Period

MEFPPE MEFP

Observed
Past

Forecast
Current

Forecast

Source of
Ensemble Member
6-hour Tavg value

12z to 18z -- -- -- interpolation

18z to 00z Tavg Tmax Tmax sample from distribution

00z to 06z -- -- -- interpolation

06z to 12z Tavg Tmin Tmin sample from distribution

Temperature is represented by 14 base events, and no modulation events. Each base event is a
1-day period from which the Tmin and Tmax values are extracted from past forecasts and the
current forecast. Samples of 6-hour Tavg are drawn from the corresponding conditional
probability distributions. Tables 13a and 13b show how the sampled values can be organized,
with “b” and “c” indicating base event sample and correlation values respectively.

Tables 13a and 13b - Temperature Samples for Schaake Shuffle (Forecast Days 1 - 28)

The Schaake Shuffle treats the values in Tables 13a and 13b completely separately. With Table
13a, base events are extracted from the 41-year historical record, and year labels are assigned
to the base events of corresponding rank. There are no modulation events, so no further
adjusting of values is necessary. The process is repeated for the values in Table 13b. The
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temperature ensembles are created by merging (alternating 06z-12z and 18z-00z) Tavg values
having the same year label, and then interpolating in time between those values to obtain the
missing 00z-06z and 12z-18z Tavg values. Each resulting set of values having matching year
labels is an ensemble member.

H - Extend Ensembles to 365 days using Climatology
For the CNRFC morning forecast (T0 = 12z), the ensemble is extended to span days 29 - 365 of
the forecast. This part of the ensemble is defined outside of the HEFS using raw climatology, in
which each member corresponds to one year in the 41-year historical record. Raw climatology is
also used to define ensemble members for freezing level for days 11 through 365. The resulting
365-day forecasts are then merged with the 10-day single-valued observed forcings (QPE,
QTE, and QZE) to create the 375-day (from T0 - 10 days to T0 + 365 days) forcing series
required to execute the hydrologic models. A summary of the resulting forcings is provided in
Table 14. Note that work is underway at CNRFC to configure MEFP to generate a freezing level
ensemble for days 1 through 10.

Table 14 - Overview of Ensemble Forcings

I   - Apply Forcings Ensembles to Hydrologic Models
The hydrologic models are configured to and executed within the framework of the Community
Hydrologic Prediction System (CHPS). The ensemble forcings of Table 14 are applied to the
hydrologic models. Note that for the T0 = 12z forecast, the ensemble forecast extends 365
days. For all other forecast times (T0 = 0z, 6z, or 18z) the ensemble forecast extends 28 days.

The ensemble forcings are applied across all subbasins (3 forcings for each subbasin elevation
zone) one member at a time. This ensures that historically-based spatial and temporal patterns
embedded by the Schaake Shuffle are preserved. The results of applying the ensemble forcings
to the hydrologic models are ensemble streamflow forecasts, reflecting only meteorologic
uncertainty. At each ensemble forecast location, the ensemble streamflow forecast consists of
41 members. These streamflow forecasts are then further processed (outside of the HEFS) to
create various probabilistic displays, including plots of short-term discharge and seasonal runoff
volume.
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Within CHPS, any non-expired modifiers made in previous simulations, such as HAS forecasts
or update states simulations, are included in the ensemble simulations. The only exception is
the time series change (TSCHNG) modifier when applied to a discharge series will not be
included in the ensemble simulations.
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5 MEFP Limitations
This section is intended to list the more significant limitations of MEFP. Some limitations,
particularly those relating to issues of consistency, are not limitations of the HEFS methodology,
but are limitations on data availability. Other limitations, particularly those contributing to
underprediction of rare events, will be addressed to some extent with the release of the HEFS
version 2.

Only Meteorological Uncertainty is Considered
The MEFP system is a very robust and stable system that can be implemented easily into an
operational environment.  Verification studies done by the CNRFC have shown that the MEFP
program provides statistically reliable spread across seasons, lead times, and event size.
However, the uncertainty is limited to that associated with forecasted precipitation and
temperature.  The HEFS does have hydrologic uncertainty components (EnsPostPE and
EnsPost), but these have not yet been implemented at the CNRFC. This is because previous
testing on an early version of HEFS indicated additional refinement of these components would
be appropriate before testing further.

The MEFP does not Generate Freezing Level Ensembles
Another MEFP limitation is the quality of temperature estimates during winter storms.  Since
MEFP can only be parameterized for temperature and precipitation, uncertainty in rain-snow
elevation estimates is derived within SNOW-17 when the lapsed temperature forecast is used to
estimate the rain-snow elevation. MEFP creates 6-hour temperature ensembles derived from
daily maximum and minimum forecasts. This method works well when describing the daily
diurnal pattern during clear sky situations. But it does not work well for precipitation events when
variations between daily maximum and minimum temperature are compressed or even
non-existent. This occurs when storm attributes, such as frontal passage, overwhelm the normal
diurnal pattern. In these situations, the diurnal pattern forecast can be overstated and result in
incorrect precipitation typing (rain or snow). This can be problematic for basins where watershed
area changes dramatically with just a slight change in elevation.  In these cases, a very large
area of the watershed could be modeled as snow falling due to unreasonable low temperature
estimates from the diurnal temperature estimates. This issue could be improved by adding a
third parameter to the MEFP - freezing level.  Also, parameterizing temperatures based on
6-hour records rather than daily maximums and minimums would also be an improvement.
Because of this, CNRFC has configured HEFS to use the single-valued freezing level estimate
(HAS-QZF) for all ensemble members for the first 10 days of the forecast.  This change
eliminates any uncertainty in precipitation typing, but does provide a more realistic estimate of
where it is raining and snowing in a watershed.  So MEFP temperature uncertainty impacts are
limited to snowmelt processes modeled by SNOW-17 during the first 10 days of the forecast
run.

38



CNRFC notes that other RFCs are using the two temperature slots in the MEFPPE to forecast two of
the synoptic times and then interpolating the other two. So there is a mitigation/workaround for
situations where the diurnal-cycle modeling is inappropriate.

Conditionality of Meteorological Uncertainty
In addition, as described above, the MEFP is calibrated using samples across a moving 61-day
window.  The samples likely represent a diverse set of atmospheric conditions that do not have
the same predictability.  As such, it is possible that MEFP provides over-dispersed ensembles
when atmospheric conditions are more predictable (strongly forced frontal system)  and
under-dispersed ensembles when atmospheric conditions are less predictable (a cut-off low or
convective).  However, deriving conditional distributions could run into issues related to
inadequate sample sizes.

Limited Ensemble Spread in Late Season Snowmelt Forecasts
While HEFS forecasts generated by MEFP reflect uncertainty in meteorology, uncertainty in the
current state of the hydrologic models is not reflected. With respect to snowmelt forecasts, it is
important to recognize that uncertainty in the modeled snowpack is not reflected. While
hydrologic models are periodically updated to reflect latest available snow course
measurements, the resulting values of basin zone snow-water equivalent (SWE) are
single-valued best estimates. Uncertainty about these estimates is not modeled.

Consistency in Forecast Models and Methods
Current and past forecast data sets should be as consistent as possible to avoid introducing
errors in bias or spread into the ensemble forecast. Ideally, the current operational forecast
model, and associated forecast methods, would be exactly consistent with the model and
methods reflected in past forecasts. However, the operational forecast model and methods are
adjusted with time in order to provide a best forecast. Past forecasts in the form of reforecasts
will typically reflect a single “frozen” version of the model, and past forecasts in the form of
archived forecasts will reflect any changes in models or methods during the record. Efforts are
made to build data sets that are as consistent as possible, but they are not perfectly consistent.

An example of a known inconsistency at the CNRFC is described here. At the CNRFC, the HAS
QPF for days 1 - 3 is used as the single-valued precipitation input to the MEFP. Archived
forecasts for the period of record wy 2010 - 2021 (Table 5) supplied to the MEFPPE for
computation of statistical parameters. However, the National Blend of Models (NBM), which is a
component of the current HAS QPF, is only reflected in the HAS QPF forecast archive for the
last few years of the record. Through testing, the CNRFC determined that ensembles computed
using the HAS-QPF for days 1 - 3, still out performed GEFSv12 even with the inconsistent
representation of the NBM.

Consistency in Period of Record
The HEFS computations can also be affected by inconsistencies in period of record. There is a
period of record of historical data that the Schaake shuffle draws upon to rank historical
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canonical events. This period of record should equal that from which canonical events are
drawn for the MEFPPE to compute statistical parameters.  Computations to create ensembles
beyond the MEFP period (28 days at the CNRFC), which can be based on raw or sampled
climatology, should also reflect the same period of record to prevent sudden changes at the
transition.

Only One Parametric Distribution Option
The MEFP is limited to the gamma distribution for fitting the marginal distributions of
observations and forecasts.  This can be an issue when trying to get a good fit at the tails of a
distribution.  The quantile-quantile plots in Figures 20 and 21 show how observations and
forecasts for an example location, French Meadows (FMDC1), do not have a good fit in the
upper tail of the distribution.  Verification studies at the CNRFC have shown that this issue can
adversely affect the reliability of the ensemble forecast associated with a large event (greater
than about 200 mm over 3 days at FMDC1), resulting in a low bias.

Figure 20 - French Meadows Observed Data & Theoretical Quantiles for 3-day Total
Precipitation for January 26th 60-day Window Sample Size
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Figure 21 - French Meadows Forecast Data & Theoretical Quantiles for 3-day Total
Precipitation for January 26th 60-day Window Sample Size

Type-II Conditional Bias
Type-II conditional bias (T2CB) in this case refers to the tendency of MEFP to systematically
underestimate the most extreme observed precipitation amounts. In contrast, smaller forecasts
are reasonably unbiased, conditional upon the forecast amount (aka small Type-I conditional
bias or good "reliability"). The main reason for this is a “regression dilution” or “attenuation
effect” (see Wikipedia for description), which is common with regression-type statistical
post-processors, such as the MEFP. Methods for reducing the effect of T2CB are under
consideration for implementation in the HEFS v2.

Lack of Smoothness between Canonical Event Boundaries
Each canonical event is a separate statistical model. When these models are brought together
in a forecast horizon, without any kind of smoothing (as is the case with the MEFP), then any
differences in the statistical behavior between these events (e.g., merely due to sampling
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uncertainty) will translate into discontinuities in the forecast horizon. They are generally most
prominent for temperature because it is a smoothly varying time-series. At the CNRFC, this lack
of smoothness can also occur when transitioning from the last day of the MEFP-generated
ensemble forecast (day 28) to the first day of the ensemble forecast developed outside of MEFP
using raw climatology. This occurs when there is an inconsistency between the “no-skill”
baseline adopted by the MEFP for periods of forecast forcing, which is known as “resampled
climatology”, and the raw climatology used after the period of forecast forcing. This typically
occurs when the period of record for the forecast forcing (and hence resampled climatology) is
different from the period of record used for raw climatology.

The Schaake Shuffle is not Flow Dependent
The MEFP uses observed time-series that begin on the same historical month/day/hour in each
of N historical years. It is purely conditional upon the month, day and hour at which the forecast
is issued, nothing else. For example, if there is an extreme atmospheric river on 21 January
2024 at location XYZ, but there are no similar cases on or near that calendar day in the
historical record, then the Schaake shuffle will provide a poor representation of the space time
patterns because it will use largely dry conditions to shuffle an extremely wet forecast. In that
case the Schaake shuffle will effectively randomize the inputs (since dry values all have tied
ranks). Alternatives to the Schaake shuffle exist, each with unique strengths and weaknesses.
One such alternative under consideration is adopting a “flow dependent” approach, in which
shuffling is conditioned on the current forecast (GEFS for example) state of the atmosphere.
This has the potential benefit of being more likely to capture extreme conditions if the
forecasting model is more skillful than climatology (which is, effectively, what the Schaake
shuffle relies on), but also has limitations which are beyond the scope of this document.

42



6 HEFS Products
The phrase “HEFS products”, as used in this section, refers to the streamflow forecast
ensembles and the variety of probabilistic products obtained derived from them. A variety of
HEFS products are disseminated through the CNRFC website. The simplest are the actual
streamflow forecast ensemble time series, which can be downloaded in csv format. Hourly
ensemble csv data include regulation effects and are provided out to 30 days. Daily ensemble
csv data which do not include regulation effects are provided out to 365 days.

The hourly 30-day HEFS forecasts can be downloaded for an entire forecast group in csv format
at: 30-day HEFS (Figure 22).  Through this website, a user can also obtain older ensemble
forecast csv files through the “Forecast Groups Archive” at the bottom of the page.  There is
also an option to obtain the current ensemble forecast in csv format for a single location by
entering in the five character ID in the “Individual Points” section.

Ensemble traces can also be viewed and downloaded in csv format for a given location in the
interactive short range peak exceedance plot for every location where HEFS results are
available. Figure 23 shows an example for the West Walker River.  All of the traces can be
displayed on the plot by clicking the “View Model Traces” button to the right of the graph.  The
hourly csv data can be obtained by clicking on the 5 letter ID above the graphic where it says
“CSV Ensemble File Download”. There are other short range graphics that can be viewed on
the CNRFC website, such as probabilistic accumulated volumes, and daily box plots and
histograms.

There are also a number of long range volume plots for many HEFS locations as well.  There
are graphical displays for forecast monthly, seasonal (April-July), water year, and multi-year
volumes.  Above the water year accumulation plots (Figure 24) the daily 365-day ensemble
time series can be accessed by clicking on the five letter ID next to the “CSV Ensemble File
Download” text.  There is also a 365-day HEFS csv download site similar to the hourly one
where a user can download an HEFS forecast csv file for all locations in a given forecast group,
obtain older HEFS forecasts for a given date, and also get a current 365-day HEFS for a
specified location.  This site can be accessed by clicking on the “Forecast Group” text to the
right of the “CSV Ensemble File Download”.
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Figure 22 - Hourly 30-day Ensemble Streamflow Forecasts
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Figure 23 - Short Range Ensemble Graphic
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Figure 24 - Long Range Water Year Accumulation Plot
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8 Attachment “Schaake Shuffle Step-by-Step Example”
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Schaake Shuffle Step-by-Step Example



•Assume we have a 24 hour precipitation forecast.  We have 4 6-hour 
base events and one 24 hour total modulation event – 5 canonical 
events.

•Assume we have 10 ensemble members that matches the number of 
years we have in our climatology.

•The Schaake Shuffle will compute the mapping of the ensemble 
members one canonical event at a time starting from lowest 
correlation, and ending with the highest correlated canonical event.

•Base and modulation event precipitation amounts will be shuffled 
based on the climatological ordering technique.



Here are the raw ensemble member precipitation values generated by MEFP prior 
to being shuffled by the Schaake Shuffle method

6-hour base event periods 24 aggregation 
modulation event

correlation values



Based on the correlation values, the 18-24 hour period will get shuffled first because it has the 
lowest correlation.  The modulation event will be applied last because it has the highest 
correlation.

1234 5



24 aggregation 
modulation event

• Let’s start with the Schaake Shuffle being applied to the lowest correlated period: 18-24 hr.

• We want to map these 10 members to historical years as part of the Schaake Shuffle.

• We apply the Schaake Shuffle method to each base event, one at a time.

• We will step through this example step by step for base event 18-24hr.

• The shuffling for the 18-24 hour period is associated with the corresponding historical precipitation 
amount ordering.

MEFP unshuffled precipitation 6-hr 
precipitation values

Historical precipitation values for 
corresponding forecast periods



First, the 10 ensemble values are ranked by forecast value for the base event of 
interest.  



The 10 historical precipitation amounts are determined for 
the  given forecast period.



The 10 historical precipitation 
amounts are then ranked.



The highest ranked precipitation ensemble value is assigned the historical year with the largest precipitation 
amount.



The second highest ranked precipitation ensemble value is assigned the historical year with the second 
largest precipitation amount.



This process is repeated for all ensemble values.

















• Now let’s look at the ensemble members for the second lowest correlated base event:  12-18 
hour forecast period.

• Ensemble members are ranked just like for the 18-24 hour base event



Historical values for the base event are selected and ranked just like for the 18-24 base event



Results from Base Event 18-24 hr

Results from Base Event 12-18 hr



Results from Base Event 6-12 hr

Results from Base Event 0-6 hr



Results from Modulation Event 0-24hr Total



Combined Results for the 4 base events
0-6 hr 6-12 hr 12-18 hr 18-24 hr

Sorted Base Events are Combined into shuffled ensemble time series



• Now we apply the modulation event last since it has the highest correlation

• The 24-hour modulation event is shuffled like the base events (see previous graphic)

• 6-hour values are summed up over 24 hours

6-hour values aggregated over 24 
hour period Shuffled 24 hour 

Modulation Event Values



A factor is calculated that will be applied uniformly to the individual 6-hour precipitation 
values  so that the 6-hr summations equal the modulation event totals

Modulation event 
shuffled totals

Ratio of modulation event values to 
6-hr aggregations over 24-hr period

24-hour totals from 
6-hour values



A factor is calculated that will be applied uniformly to the individual 6-hour precipitation 
values.  In this case, since the modulation event is applied last, the scaled 6-hour 
precipitation 24 hour totals equals the shuffled modulation event totals.

Ratio of modulation event values to 6-hr 
aggregations over 24-hr period

=x

New 6-hr totals 
equal modulation 
event totals



• In this example, the modulation event had the highest correlation, so 
it was ordered and applied last after all base events.

• If the modulation event had a lower correlation than one of the 
6-hour base events, the modulation event would be applied before 
the 6-hour base event with the higher correlation.

• So the modulation event would be applied prior to all of the 6-hour 
base events being shuffled, and assigned historical year labels.

• In this case, climatological values are used for the base events that 
have not gone through the Schaake Shuffle when computing the 
modulation scale factor.

•The climatological values for the 6-hour base event with the higher 
correlation are replaced with shuffled MEFP values after the 
modulation event has been applied.
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