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 1 Introduction 
 The purpose of this document is to help clarify how National Weather Service (NWS) Hydrologic 
 Ensemble Forecasts are generated at the CNRFC.  It is hoped that an increased understanding 
 of the fundamentals, process, and limitations will lead toward (1) more informed and appropriate 
 applications by users and (2) ideas for improvements and refinements by researchers and 
 collaborators. 

 Hydrologic forecasts provide value to a variety of sectors including flood management, reservoir 
 management, water resources management, hydropower, navigation, and recreation. 
 Historically, hydrologic forecasts have been single-value (deterministic) and of short duration (a 
 day or two) given the uncertainty in the weather forecast.  Improvements in weather forecast 
 skill has led to longer forecast durations (e.g. 5 days) in some locations.  Probabilistic forecasts 
 (usually regression based) have been restricted to seasonal volume forecasts associated with 
 snowmelt (e.g. April-July volume). 

 Over the past two decades it has become clear that water resource and emergency managers 
 need more than a single-value forecast.  They are managing the risks of their actions (or 
 inactions) and the associated costs.  Risk is the product of probability and consequence.  They 
 understand the consequences.  They need the probability.   They need probabilistic hydrologic 
 forecasts for short, medium, and long-range decision making. 

 Figure 1 - Forecast use by temporal range 

 Probabilistic forecasts can be generated in multiple ways.  The most common are through error 
 propagation and through ensemble techniques.  For reasons associated with feasibility and 
 application, ensemble techniques have been the focus of the National Weather Service’s 
 development efforts for some time.  Progress has been attributable to a growing acceptance 
 that uncertainty is something that can be leveraged to make more informed decisions (National 
 Research Council of the National Academies 2006) and substantial community support as 
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 evidenced through the success of the Hydrological Ensemble Prediction Experiment (Schaake 
 et al. (2007),  www.hepex.org  ). 

 Sources of uncertainty which contribute to uncertainty in the streamflow forecast include: 
 meteorology, hydrology, and flow regulation.  Assuming that the (1) hydrologic model is 
 well-conceived and well-calibrated, (2) observations used to drive the model are representative 
 and quality controlled, (3) the individual running the model is well-trained and experienced, and 
 (4) observed and near-term regulated flows are well-defined, then the majority of uncertainty in 
 CNRFC streamflow forecasts typically arises from the uncertainty in future weather 
 (precipitation and air temperature forecasts). 

 Figure 2 - Sources of streamflow forecast uncertainty 

 The NWS effort to develop a methodology and toolset capable of generating reliable short, 
 medium, and long-range hydrologic ensembles began in about 2001.  Prototype efforts took 
 nearly 10 years to make their way into operations.  Today, the CNRFC uses the Hydrologic 
 Ensemble Forecast Service (HEFS) to issue forecasts daily at 353 locations (  Figure 3  ).  HEFS 
 forecasts are operationally relied upon by water, emergency, environmental, hydropower, and 
 recreation managers to manage risk and improve outcomes. 
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 Figure 3 - CNRFC HEFS Forecast Locations 
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 2 Summary points 
 The CNRFC uses two methods for developing meteorological ensemble forcings for application 
 to hydrologic models to obtain ensemble runoff hydrographs reflecting meteorologic uncertainty. 
 With the first method the statistical post-processing capability of HEFS is used to construct 
 ensemble forcings for forecast days 1 - 14. This method leverages information from the record 
 of past forecasts and observations to leverage conditional probability distributions operationally. 
 With the second method, the CNRFC adopts raw climatology for ensemble forcings for forecast 
 days 15 - 365. Important aspects of these methods as implemented at the CNRFC, and 
 characteristics of the resulting streamflow ensemble forecast, are listed below. 

 ●  As of this writing (June, 2025), the number of ensemble members is expected to 
 increase from 43 to 44 in Fall 2025. 

 ●  The CNRFC ensemble streamflow forecasts, which result from applying the ensemble 
 forecasts of precipitation and surface air temperature to the hydrologic models, reflect 
 meteorological uncertainty only. Hydrologic uncertainty is not accounted for. 

 ●  Work is underway at the CNRFC to configure the HEFS to also generate an ensemble 
 forecast of freezing level for forecast days 1 - 10 (see  Table 6  for context). 

 ●  The precipitation and surface air temperature ensembles generated by the HEFS are 
 bias-reduced and exhibit consistent variability with respect to the record of forecasts. 
 Furthermore, the HEFS employs a method known as the Schaake Shuffle (Clark et al., 
 2004) to ensure that the ensembles are temporally and spatially consistent across 
 locations. 

 ●  Operational HEFS consists of two primary components:  the Meteorologic Ensemble 
 Forecast Processor (MEFP), and 2) the Ensemble Postprocessor (EnsPost). CNRFC 
 uses the MEFP, but does not use the EnsPost. The EnsPost is designed to modify 
 streamflow forecast ensemble members to minimize bias and incorporate uncertainty 
 attributed to hydrologic modeling. The CNRFC plans to test EnsPost pending completion 
 of planned improvements. A timeline for testing and implementation has not been 
 established. 
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 3 Components of the HEFS 
 The HEFS has two primary components:  1) MEFP, and 2) the EnsPost. Each of these also has 
 a parameter estimator (PE) component: the MEFPPE and EnsPostPE. These components and 
 their position in the forecast sequence are shown in  Figure 4  . CNRFC does not use EnsPostPE 
 or EnsPost. During HEFS configuration, CNRFC uses MEFPPE to compute historically-based 
 statistical parameters. During forecast operations, CNRFC uses MEFP to construct ensemble 
 forcings for forecast days 1 - 14 of precipitation and air temperature and forecast days 1 - 10 of 
 freezing level (see  Table 5  ). 

 Before MEFP can be run operationally, the MEFPPE is used to extract values from historical 
 time series of past forecasts and their corresponding observations.These values are extracted 
 from a pre-defined set of time-windows (canonical events) relative to the time of forecast. Values 
 of mean and standard deviation are computed for the resulting samples of past forecasts and 
 observations, and the correlation between the two is also computed. These statistical 
 parameters, computed at every basin zone, and for every canonical event, provide the 
 foundation from which the MEFP generates ensemble forcings during operations. Outside of 
 HEFS, ensemble forcings are extended through forecast day 365 using raw climatology. The 
 ensemble forcings are then applied to the hydrologic models to produce ensemble streamflow 
 forecasts. As only meteorologic uncertainty is reflected by the ensemble forcings, the resulting 
 ensemble streamflow forecasts do not reflect hydrologic uncertainty. 

 Though not presently used at the CNRFC, the EnsPost is designed to be executed once the 
 streamflow ensemble forecast has been created by the MEFP. The EnsPost is designed to 
 adjust streamflow ensembles to reduce bias and incorporate uncertainty (spread) attributed to 
 hydrologic initial states, parameters, and modeled processes. The resulting streamflow 
 ensembles would then reflect minimal bias (both meteorological and hydrologic) and exhibit 
 historically consistent spread reflecting meteorologic and hydrologic uncertainty.  Note that the 
 CNRFC plans on testing the EnsPostPE and EnsPost components in the future, once further 
 refinements have been made. 
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 Figure 4 - Components of the HEFS as implemented at the CNRFC (June 2025) 

 6 



 4 Hydrologic models 

 Description 
 CNRFC hydrologic models are configured to generate simulated streamflow time series at 
 gaged subbasin outlets. These models represent the physical processes of snow accumulation 
 and ablation, soil moisture storage, and fast and slow runoff. For each area modeled, the two 
 primary modeling components are SNOW-17 (Anderson, 1976) and SAC-SMA (Burnash, 1973). 
 Both models share the following characteristics: 

 ●  A conceptual model representing physical processes. 
 ●  Model parameters derived from calibration to historical record and guidance. 
 ●  Model time step is 6-hours. 
 ●  One-dimensional model, that computes area-average depth (not volume) time series. 
 ●  Post-model, unit hydrograph applied to convert simulated depth series to1-hour (most 

 locations, 6-hour at some) flow series. 
 ●  Operationally used for continuous simulation, with model states being saved after one 

 forecast to provide initial states for the next. 

 Meteorologic forcings are the collection of continuous 6-hour time series of precipitation, air 
 temperature, and freezing level required that are required inputs to the hydrologic models. Data 
 types of these three quantities are given in  Table  1  . Air temperature is the value two meters 
 above the ground surface. 

 Table 1 - Forcings data types 

 Each 6-hour forcing time series is a series of grids, with each grid spanning all of the modeled 
 CNRFC basins. The grids are produced in Hydrologic Rainfall Analysis Project (HRAP) format. 
 Each grid cell is nominally about 4.7 km x 4.7 km, but varies gradually with changes in latitude 
 and longitude.  Figure 5  shows an example of the HRAP grid mesh overlaying CNRFC subbasin 
 boundaries. 

 The freezing elevation forcing is converted into a rain-snow elevation series for use in 
 SNOW-17. SNOW-17 computes snow accumulation and ablation. It functions as a 
 temperature-index model during non-rain conditions, and as a simple energy budget model 
 during rain on snow events. Two key outputs are the snow water equivalent time (SWE) time 
 series, and the rain plus snow time series. During winter months, the hydrologist may adjust 
 how much SWE is in the model based on observations. The rain plus snow series is the 6-hour 
 area-average series of rain depth (on bare ground) plus melt depth (on snow-covered area), 

 7 



 with each component weighted by its portion of total area. This series is provided as input to the 
 SAC-SMA. 

 SAC-SMA is a soil moisture accounting model. It simulates water movement within the soil as a 
 system of tanks, and flow resistances between those tanks. There are two soil zones. In each 
 zone the upper most tank represents tension water while the other tanks represent free water. 
 The “upper zone” consists of three tanks. These tanks accumulate rain plus melt, allow 
 percolation to the “lower zone”, and are the source of three runoff components:  direct runoff, 
 surface runoff, and interflow. Percolation between the two zones is computed using a highly 
 nonlinear equation which uses as inputs the upper zone free water tank contents and lower 
 zone tension water tank contents as inputs. Parameters of the equation are determined by 
 calibration. Also in the lower zone are two free water tanks. One contributes primary (long-term) 
 baseflow, and the other contributes secondary (short-term) baseflow, to runoff. All runoff 
 components are added together to obtain the runoff depth time series for the area. 

 Basin zone runoff 
 The CNRFC delineates each subbasin area contributing to each streamgage location. In order 
 to improve modeling of subbasins having a large change in elevation, each subbasin is divided 
 into elevation zones, or “basin zones”, using the 5,000 and 8,000 foot contours. As a result each 
 CNRFC subbasin consists of 1, 2, or 3 basin zones. An example of the delineation of subbasins 
 and basin zones is shown in  Figure 5  . A unique hydrologic  model (SNOW-17 and SAC-SMA) is 
 developed for each basin zone, with unique the forcings of precipitation and air temperature for 
 each basin zone. For the freezing level, the highest basin zone forcing is adopted for all basin 
 zones in the subbasin. For subbasins having more than one basin zone, basin zones improve 
 the modeling of snow accumulation and ablation processes, and can also improve modeling of 
 soil moisture. 

 Subbasin runoff 
 The simulated runoff depth series from each elevation zone in a subbasin are combined to give 
 the total runoff depth series for the subbasin. This series is then transformed by unit hydrograph 
 into the runoff hydrograph for the total subbasin area. At this point, depending on the specific 
 basin in question, the hydrograph may be routed downstream using the Lag K hydrologic 
 routing method, and channel losses (or gains) determined through calibration may be included. 
 If the subbasin is a “local” subbasin, then a hydrograph representing an upstream location will 
 be routed and added to the local hydrograph. This yields the total simulated flow at the 
 streamgage. The so-called “estimated” flow hydrograph is obtained by merging the observed 
 and simulated hydrographs and defining a time over which to transition, or “blend”, from the last 
 observed value to the simulated series. This series is then routed downstream. 

 The hydrologic forecaster compares simulated and observed runoff hydrographs to assess 
 hydrologic model performance, and when warranted, will make adjustments to model 
 parameters, states, or related time series. 
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 Figure 5 - HRAP grid overlaying subasins and subasin zones 
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 Data sources for hydrologic calibration 
 Historical data used to calibrate hydrologic models are listed in  Table 2  . The first three rows 
 provide sources of the three observed forcings. As indicated in the third column, more than one 
 source was needed to complete the period of record for precipitation and freezing level. CNRFC 
 creates precipitation grids from Global Historical Climate Network (GHCN) gage data for the 
 early portion of the precipitation record. For the later portion CNRFC uses the archived 
 operational QPE grids. Observed temperature grids from NOAA’s Analysis of Record for 
 Calibration (AORC) are used for the full calibration record. Freezing level is shown as 
 “computed” because the majority of the record is based on NWP models. In 2019, CNRFC 
 began using archived operational QZE grids to extend the freezing level record. Observed 
 streamflow data are not used by HEFS, but are listed for completeness as a needed data 
 component for hydrologic models calibration. 

 Table 2 - Observed Data Sources 

 QPE  - CNRFC Quantitative Precipitation Estimate 
 ERA5  - ECMWF Reanalysis version 5 
 GFS  - Global Forecast System 
 QZE  - CNRFC Quantitative Freezing Level Estimate 
 USGS  - United States Geological Survey 
 CADWR  - California Department of Water Resources 
 ORWRD  - Oregon Water Resources Department 
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 5 CNRFC forecasts and forcings 

 Overview of CNRFC forecasts 
 Each CNRFC forecast is generated with respect to time T0 (pronounced “T zero”). T0 is the 
 time at which the meteorologic forecast begins. Depending on when the forecast is issued, T0 
 can take on one of 4 values. These values, and corresponding issuance times, are shown in 
 Table 3  . The difference between T0 and issuance time is 5 or 4 hours depending on whether 
 PST or PDT is in effect. As UTC time is often referred to as “z” (Zulu) time, the T0 times in the 
 first column are often referred to as 12z, 18z, 00z, and 06z. Every day, CNRFC issues a 
 morning forecast with T0=12z. During the rainy season, afternoon forecasts are also issued on 
 weekdays for T0=18z. As needed to support public safety, forecasts can also be issued at 
 T0=00z and 06z. 

 Table 3 - Forecast T0 and Issuance Times 

 When CNRFC issues a forecast for any T0, it issues both deterministic (or “single-valued”) 
 forecasts and ensemble forecasts. Ensemble forecasts are also referred to as probabilistic 
 forecasts as probabilistic products derived from the ensemble are often of interest. As shown in 
 Table 4  , single-valued forecasts extend 10 days for all T0 forecasts. On the other hand, 
 ensemble forecasts extend 365 days for the 12z forecast and 14 days for the 18z, 00z, and 06z 
 forecasts. Note that the first 14 days of all ensemble forecasts are the result of 14-day forcings 
 developed using statistical sampling and distribution fitting implemented by the MEFPPE and 
 MEFP. Only the 12z ensemble forecast is extended to 365 days by adopting forcings based on 
 raw climatology. 

 Table 4 - Forecast types and lengths 
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 While the 12z ensemble forecast is the focus of the remainder of this document, it requires a 
 single-valued forcing spanning forecast days 1 through 14 as input. Single-valued forcings are 
 further described in the next section. 

 Single-valued forcings - for the deterministic forecast 
 The on-duty hydrologist generates the 10 days of 6-hour precipitation forcing grids for the 
 observed  portion of the single-valued forcings. This requires reviewing measurements from 
 precipitation gages and snow sensors. This is accomplished by visual inspection of 
 hyetographs, comparing with radar, multi-radar multi-sensor (MRMS) grids, and satellite 
 imagery. Once satisfied, observed precipitation grids are created by normalizing the reviewed 
 point values to a seasonal Parameter-elevation Regressions on Independent Slopes Model 
 (PRISM) grid, applying a distance squared algorithm to populate the target grid, then multiplying 
 by the corresponding PRISM grid cell values. While not considered forcings, the hydrologist also 
 reviews streamflow at this time. As indicated in  Table 5  , these steps  are referred to in this 
 document as the RFC QC process. Observed air temperature and freezing level grids grids are 
 adopted without modification from URMA and RTMA, and the HRRR respectively. 

 The on-duty meteorologist generates the 10-day  forecast  portion of the single-valued forcings. 
 During active weather, the forecaster is likely to apply judgement to adjust days 1 - 6 of 
 precipitation (RFC QPF) and/or days 1 - 6 of freezing level (RFC QZF). These processes 
 include reviewing NWS Weather Prediction Center (WPC) guidance and available model 
 outputs, using the Graphical Forecast Editor to weight, adjust, or use source data without 
 modification. If weather is calm, or there is no precipitation in the forecast, then a single model, 
 such NBM, GFS, ECMWF, or WPC guidance may be adopted. The NBM air temperature 
 forecast is used without modification. This process results in a 10-day set of 6-hour  forecast 
 grids for the 3 forcing components. These processes and sources are indicated in  Table 5  . 

 Table 5 - Sources of single-valued forcings for the deterministic forecast 

 RFC QPE  - CNRFC QC of observed (gage) precipitation data 
 RFC QPF  - CNRFC review/adjust. of WPC, NBM, and other precipitation sources 
 RFC QZF  - CNRFC review/adjust. of WPC, NBM, and other freezing elevation sources 
 GFS  - Global Forecast System 
 URMA  - UnRestricted Mesoscale Analysis (for 12 hours or more before T0) 
 RTMA  - Real-Time Mesoscale Analysis (for 6 hours before T0) 
 HRRR  - High-Resolution Rapid Refresh 
 NBM  - National Blend of Models 
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 Once the observed and forecast grids are finalized, a shapefile of basin basin zone boundaries 
 is used to extract area-average values. The resulting 6-hour time series span 20 days and are 
 the deterministic forcings applied to each basin modeled in the CNRFC hydrologic model 
 system. Hydrographs from the hydrologic model simulations then define the 10-day forecast 
 portion of the deterministic runoff forecast, while RFC QC’d observed flows define the observed 
 portion. Note that on the CNRFC webpage, that most deterministic graphics show only the first 
 5 days of forecasted runoff. 

 Single valued forcings - for generating ensemble forcings 
 Table 6  provides sources of single-valued forcings used to generate ensemble forcings. Note for 
 forecast days 1 through 10, that  Tables 5  and  6  are  mostly  the same. The difference is in 
 forecast days 7 -10 of the precipitation forcing, in which the single-valued forcing for 
 deterministic forecasts (  Table 5  ) uses the NBM while the single-valued forcing for generating 
 ensembles  (Table 6  ) uses the GEFS mean.  Table 6  also contains shaded cells indicating 
 additional steps must be taken to obtain the ensemble forcings (see  Ensemble forcings 
 development  ). While the white cells represent single-valued sources, the single-valued series 
 are duplicated to provide an ensemble for that portion of time. Light grey shading indicates a 
 single-valued time series is used as input to the MEFP, which samples statistical distributions to 
 obtain the needed building blocks to construct the forcing ensemble Dark grey shading indicates 
 that there are no single-valued forcing series and the MEFP is not used. Instead, each 
 ensemble member is directly defined by the historical time series for a unique historical water 
 year. Note also that ensemble forcings extend through forecast day 365 for 12z forecasts, but 
 only through forecast day 30 for 18z, 00z and 06z forecasts. provides more details on how the 
 ensemble forcings are constructed. 

 Table 6 - Sources of single-valued forcings for ensemble forcings 

 GEFS mean  - mean of ensemble from the Global Ensemble Forecast Service 
 ECMWF  - European Centre for Medium-Range Weather Forecasts 
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 6 Generating the ensemble forecast 

 Overview of ensemble forecast 
 The following sections describe how the MEFPPE and MEFP components of the HEFS are 
 used to generate ensemble forcings spanning forecast days 1 - 14. The ensemble forcings are 
 then extended further using raw climatology, in which each member reproduces a unique 
 historical year. Once generated, a unique set of forcing ensembles (of precipitation, air 
 temperature, and freezing elevation) is applied to each basin zone of the hydrologic models. 
 The resulting ensembles of simulated runoff hydrographs at basin outlets and downstream main 
 stem locations define the ensemble runoff forecast. This allows for computation of useful metrics 
 on the forecasted variability of flow, volume, and timing. For those seeking greater detail on the 
 process,  references  are provided. 

 How many ensemble members? 
 In this document, “  n”  is used to represent the number of ensemble members.  Table 7  shows 
 that since water year 2021, when  n  = 39, n has increased by 1 with the start (roughly) of each 
 new water year. As of this writing (June, 2025)  n  = 44, and is expected to increase to  n  = 45 in 
 Fall 2026. If  n  is not increased one year, possibly due to limited resources in that  year, it would 
 likely be increased by 2 when the effort was undertaken the following year. 

 Table 7 - Number of ensemble members 

 Early in the evolution of applying HEFS to generate ensemble forecasts, CNRFC used a 
 historical record starting with water year 1950. In 2020, the starting water year was changed to 
 1980. This change was made because: 

 ●  There was less confidence in the quality of the pre-1980 data datasets. 
 ●  The period of 1950 - 1980 was considered less representative of the present climate 

 than the post-1980 period. 

 14 



 Ensemble forcings development 
 The HEFS employs statistical postprocessing to develop ensembles of 6-hour time series of 
 precipitation and air temperature for the first 14 days of the forecast. The components of HEFS 
 which generate these parts of the ensembles are the MEFPPE and the MEFP. Outside of HEFS, 
 days 15 - 365 of the precipitation and air temperature time series, and days 11 - 365 of the 
 freezing level time series are directly defined by raw climatology. 

 Developing the ensemble forecasts begins with the MEFPPE, which computes statistical 
 distribution parameters relating  past  forecast values to observations for a collection of forecast 
 time windows (canonical events). This is done only once as part of configuration of the HEFS. 
 Operationally, the MEFP computes for days 1 - 14 the ensemble of basin zone forcings required 
 by the hydrologic models. For each canonical event, the MEFP extracts from the  current 
 single-valued forecast its value, which is the  condition  for which the conditional probability 
 distribution of historical values is generated and sampled. For each canonical event, the MEFP 
 draws  n  samples from the corresponding conditional distribution. At this step in the process the 
 bias in the single-valued forecast series is minimized because the sampled distributions 
 represent observations, not past forecasts. The MEFP then applies the Schaake Shuffle. This 
 process scales and re-sorts the canonical events based on previously computed correlation 
 values, then “stitches” the canonical events together based on their historical ranking to reveal 
 the  n  ensemble forcings for forecast days 1 - 14.  Outside of HEFS, the forcings are then 
 extended using raw climatology. 

 Steps are provided below for developing ensemble forcings from the single valued forcing. Each 
 step is described in greater detail in the following sections. 

 As part of HEFS configuration, run the MEFPPE to compute the sets of statistical parameters 
 relating past forecasts to corresponding observations. 

 A.  Collect observed and past forecast data 
 B.  Define canonical events 
 C.  Extract canonical event historical data pairs 
 D.  Compute statistical parameters 

 During operations, run the MEFP to create the single-valued forecast, and leverage this with the 
 statistical parameter sets generated by the MEFPPE, to generate ensemble forcings for forecast 
 days 1 - 14. Extend the ensemble forcings using raw climatology. 

 E.  Extract current forecast canonical events 
 F.  Generate joint probability distributions and conditional probability surfaces 
 G.  Generate and sample conditional probability distributions 
 H.  Generate ensemble f  orcings (Schaake Shuffle) 
 I.  Extend ensemble forcings using raw climatology 
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 Steps A, B, C, & D - HEFS configuration with MEFPPE 

 A - Collect observed and past forecast data 
 Tables 8 and 9  list sources of observed and past forecast time series inputs to the MEFPPE. 
 Each table spans past forecast days 1 through 14, which is consistent with the grey-shaded 
 region in  Table 6  . From these time series the MEFPPE extracts historical data pairs for all 
 canonical event time windows  (see upcoming  Tables 10  and  11  ). Past forecasts can be 
 historical forecasts or hindcasts depending on data source. In  Tables 8  and  9  the column 
 “Past-forecast days” indicates which days of the past-forecast are described by the columns to 
 the right. 

 The second column “MEFPPE Initial Year” lists the first water year from which data pairs were 
 extracted. A larger sample size is generally desirable which implies that the initial data year 
 used by the MEFPPE should be the first available in the record. However, the following 
 considerations also contributed to the selection of the initial year: 

 ●  Differences in data variables - Air temperature data are generally available 24 hours a 
 day, 365 days a year, while non-zero precipitation data are only available during 
 precipitation events. As a result much less precipitation data is available for sampling 
 than temperature data. In order to increase precipitation sample sizes the MEFPPE 
 begins extracting precipitation data pairs 10 years (days 1 - 6) and 16 years (days 7 - 
 14) earlier than is done for air temperature data pairs. 

 ●  Short-term precipitation - Hindcasts of short-term (days 1 - 6) precipitation are 
 challenging to develop because the forecast process can be complex for active weather 
 situations and involve expert judgment that cannot be replicated by a computer program. 
 In order to at least partially address this challenge, CNRFC uses historical NBM 
 precipitation forecasts for 2010 - current for the first 6 days of the forecast. 

 ●  Short-term temperature - Analysis at CNRFC showed that configuring MEFPPE and 
 MEFP to use historical forecasts of air temperature, instead of the GEFS mean 
 hindcasts of air temperature, reduced bias in the resulting ensemble forecast. The NBM 
 temperature forecast has now been implemented operationally as a result for forecast 
 days for days 1 through 10. Since the NBM forecast is only available for days 1 through 
 10, the GEFS mean temperature forecast remains in use for days 11 through 14. 
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 Table 8 - MEFPPE sources for past precipitation time series 

 Table 9 - MEFPPE sources for past air temperature time series 
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 B - Define canonical events 
 Canonical events are sets of time windows within forecast days 1 - 14. The  motivation for using 
 canonical events is to capture the skill in the forecast precipitation and temperature at different 
 temporal scales.  The MEFPPE uses canonical events to compute statistical parameters relating 
 past forecasts to observations. The MEFP uses canonical events to extract canonical event 
 values from the current single-valued forecast, and ultimately to generate the ensemble 
 forcings. 

 A unique set of canonical events is defined for precipitation, and another for air temperature. 
 Each canonical event is  defined by a duration (aggregation period) and a lead time relative to T0. 
 The value assigned to a precipitation canonical event is simply the total precipitation amount 
 during the event. For air temperature canonical events, two values are of interest: the maximum 
 value (Tmax) and the minimum value (Tmin). Tmax and Tmin are described further in  E1  . 

 There are two types of canonical events:  base events and modulation events. Base events do 
 not overlap and have no gaps in between. Modulation events span multiple base events and 
 can overlap one another. At the CNRFC, precipitation is represented by 33 base and 7 
 modulation events. Temperature is represented by 12 base events and 0 modulation events. 
 The total number of canonical events used to represent precipitation and temperature for the 
 first 14 days of the ensemble forecast is therefore 52. The sequence and duration of these 
 events are shown in  Tables 10  and  11  . 

 Table 10 - Canonical events for precipitation 

 Table 11 - Canonical events for air temperature 
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 C - Extract historical canonical data pairs 
 A historical canonical data pair consists of one past forecast canonical event value and its 
 corresponding observed value. The MEFPPE extracts. For each past forecast, one data pair is 
 extracted for each canonical event. Because precipitation is intermittant, it is necessary to pool 
 data pairs from multiple forecasts to obtain sufficient sample sizes from which to compute 
 statistical distribution parameters. The MEFPPE creates a pool of data pairs on every 5th 
 calendar day, using 61-day windows. If the first calendar day for which parameters are to be 
 computed is January 1, then for each canonical event, the MEFPPE pools all data pairs having 
 forecast calendar days within plus or minus 30 days (a 61-day window) on January 1. If a past 
 forecast is available for each day, then the number of data pairs for each canonical event will be 
 equal to 61 times the number of years of past forecasts. The MEFPPE then advances the 
 61-day time window by 5 days, and repeats the process to obtain data pairs associated with 
 January 6.  The process is repeated until data pairs have been computed and stored for every 
 5th day of the calendar year. In addition to increasing sample sizes this process yields statistical 
 parameters which vary gradually through the year. Operationally, the MEFP adopts the 
 parameter set corresponding to the “5th day” nearest to the current forecast day. 

 For precipitation, the extraction of historical data pairs from the source time series is fairly 
 straightforward. For each time window defined by the canonical events in  Table 10  , the 
 extracted value is simply the accumulated value over the duration of the canonical event. 

 For air temperature, values are extracted for each base event in  Table 11  . The strategy for 
 developing the air temperature forcings is to first compute values representing the warmest and 
 coldest 6-hour periods (four 6-hour periods, beginning at 12z), then as one of the last steps of 
 the ensemble generation process, interpolate to obtain values for the two remaining 6-hour 
 periods. The warmest 6-hour period is 06z - 12z, and the coldest 6-hour period is 18z - 00z. The 
 method for computing the representative maximum and minimum values for the canonical 
 events depends on the data source, and therefore also on the forecast day. For both observed 
 (forecast days 1 - 14) and NBM data (forecast days 1 - 10), the average value over the 6-hour 
 period is used. For GEFS mean data (forecast days 11 - 14), the maximum (or minimum) value 
 over the 6-hour period is used.  Tables 12  and  13  provide  additional detail, including differences 
 between how these values are computed for 1-day (forecast days 1 -10) versus 2-day canonical 
 events. 
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 D - Compute historically-based statistical parameters 
 The MEFPPE computes the sample statistics for each pool of data pairs (for each location, 
 canonical event, and both precipitation and temperature). These parameters are: 

 𝜇  x  = sample mean of observations 
 𝜎  x  = sample standard deviation of observations 
 𝜇  y  = sample mean of past forecasts 
 𝜎  y  = sample standard deviation of past forecasts 

 = correlation coefficient between observations  and past forecasts γ

 The method used to compute joint probability assumes normally distributed data. However for 
 the case of precipitation, the normal distribution does not describe the data well, while the 
 Gamma distribution does. In order to address this issue, precipitation data values are first 
 transformed using the Normal Quantile Transformation (NQT), which is defined by  Equations 
 3a  and  3b  . The above-listed sample statistics for  precipitation are then computed for the 
 NQ-transformed samples. For air temperature, the samples are distributed normally, and no 
 transform is necessary. 

 Together, the 5 parameters can be used to define a joint probability surface, with the first pair of 
 parameters defining the marginal distribution of observations and the second pair defining the 
 marginal distribution of past forecasts. The fifth parameter defines how well observations are 
 predicted by forecasts. Note that the above set of parameters is unique for each basin zone, 
 and is defined for every 5th day of the year. Operationally, the MEFP uses the parameter sets 
 representing the 5th day nearest to the day of forecast. 
 . 
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 Steps E, F, G, H, & I - Operational forecasting with HEFS/MEFP 

 E - Extract canonical values from single-valued forcing series 
 For each basin zone, three 6-hour single-valued series representing the current forecast are 
 required by the MEFP: precipitation, maximum air temperature, and minimum air temperature. 
 These series are created by spatially extracting values from the 6-hour forecast grids. Sources 
 for the current single-valued forecast series are listed in  Table 6  .  Table 10  shows for 
 precipitation the temporal position of base (grey shading) and modulation (yellow shading) 
 canonical events.  Table 11  shows for maximum and minimum  temperature the temporal position 
 of base events (grey shading). For temperature there are no modulation events. For each 
 canonical event, the MEFP extracts values for all canonical events from the 6-hour 
 single-valued input series. 

 F - Generate joint probability and conditional probability surfaces 
 In this document, the term “conditional probability surface” refers to the mathematical surface 
 obtained when the joint probability surface (having a volume of 1.0) of observations vs. 
 forecasts is divided by the marginal distribution of forecasts. The resulting surface, when sliced 
 at a forecast value, produces a conditional probability distribution (with area of 1.0). The shape 
 of the surface reveals the effect of forecast magnitude on conditional distribution of 
 observations. 

 A detailed mathematical description of the procedures implemented by MEFP is provided by 
 Herr and Krzysztofowicz (2005) and Lu et al (2011). This section applies parts of that procedure 
 to example data sets of temperature and precipitation, and intentionally tries to avoid the more 
 advanced topics in the reference paper. The description here is intended to visually illustrate 
 how conditional probability surfaces for temperature and precipitation are created. 

 F1 - Precipitation (example) 
 Precipitation is intermittent. Properly accounting for the probability of both rain and non-rain 
 conditions is a mixed distribution problem. The MEFP provides two options for computing mixed 
 distribution statistics:  1) Explicit Precipitation Intermittency Treatment (EPT) described in Herr 
 and Krzysztofowicz (2005) and Wu et al. (2011), and 2) Implicit Treatment (IPT) described in Wu 
 et al. (2011). For short lead times the differences between IPT and EPT methods are small, 
 while EPT is much more skillful for longer lead times.  For this reason, the EPT method is used 
 at the CNRFC. 

 For simplicity, this document does not attempt to describe the details of mixed distribution 
 computations, but instead focuses on the “wet-wet” case. In this example, the CNRFC 
 configured a value of 0.254 mm as the minimum 3-day precipitation value considered non-zero. 
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 In order to provide an example demonstration of computations undertaken by the MEFPPE and 
 MEFP, an example dataset for the North Fork Dam of the American River is used in the 
 following sections. The dataset consists of 952 3-day “wet-wet” precipitation data pairs. Each 
 data pair reflects December 7 precipitation over a 3-day time period starting at T0. These data 
 pairs can be seen as plotted points in  Figures 6 and  10  . 

 Marginal distributions 
 The CNRFC configures MEFP to use the gamma distribution to describe each of the two 
 marginal distributions:  for forecast values  (  x  ), and  for observations (  y  ). Each gamma  𝑓  𝑥 ( )  𝑔  𝑦 ( )
 distribution is defined by two parameters:  the shape factor (𝛼) and the scale factor (𝛽). The 
 density function form of the gamma distribution  is shown in  Equation 1  .  𝑓  𝑥 ( )

 Equation 1 

 in which:  x = forecast value 
 𝛼 = shape factor 
 𝛽 = scale factor 
 𝛤(𝛼) = gamma function 

 Estimates of  𝛼  and  𝛽  are computed from the sample  mean (  𝜇  ) and sample standard deviation 
 (  𝜎  ). Values used to support the computation were:  𝜇  x  = 22.4,  𝜎  x  = 30.5,  𝜇  y  = 40.9, and  𝜎  y  =  44.0 
 and  𝛶  =  0.882. From  Equations 2a  and  2b  ,  𝛼  x  =  0.54  ,  𝛽  x  =  41.6  ,  𝛼  y  =  0.86, and  𝛽  y  =  47.3  . 

 Equations 2a and 2b 

 =  shape factor for  𝑓  𝑥 ( )

 = scale factor for  𝑓  𝑥 ( )
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 Figure 6 - Data pairs and confidence intervals (precipitation) 

 Figure 7 - Marginal distributions (precipitation) 
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 The resulting two marginal distributions,  f(x)  and  g(y),  are shown in  Figures 7a  and  7b  . Data 
 bins are also shown for comparison. 

 Joint Probability Distribution 
 If precipitation data were fairly normally distributed, then the same approach as for temperature 
 could be taken for generating the joint probability surface  and conditional probability  ℎ ( 𝑥 ,  𝑦 )
 surface  . Instead, the HEFS uses the normal  quantile transform (NQT) to transform the  ℎ ( 𝑦  |  𝑥 )
 forecast (x) and observed (y) values into more normally distributed data sets of  u  and  v  . The 
 NQT is defined by  Equations 3a  and  3b  . 

 Equations 3a and 3b 

 and  𝑢 =  𝑁𝑄𝑇 ( 𝑥 ) =  𝑄 − 1 ( 𝐹 ( 𝑥 ))    𝑣 =  𝑁𝑄𝑇 ( 𝑦 ) =  𝑄 − 1 ( 𝐺 ( 𝑦 ))   

 in which 
 = normal quantile transform  𝑁𝑄𝑇 ()

 = inverse of cumulative  standard normal distribution                                𝑄 − 1 (   )

 =  cumulative marginal distribution of  x  𝐹 ( 𝑥 )

 =  cumulative marginal distribution of  y  𝐺 ( 𝑦 )
 =  forecast value                    𝑥 
 =  observed value                    𝑦 

 u-v  data pairs are plotted in  Figure 8  , and marginal  distributions of  and  are plotted in  𝑢  𝑣 
 Figures 9a  and  9b  . 
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 Figure 8 - Data pairs and confidence intervals (transformed precipitation) 

 Figure 9 - Marginal distributions (transformed precipitation) 

 26 



 The bivariate standard normal distribution (  Equation 4  ) is then fit to the collection of  u-v  data 
 pairs. The distribution has only one parameter, Pearson’s product-moment correlation 
 coefficient,  , computed from transformed values.  For this example  = 0.851. γ γ

 Equation 4 

 The resulting bivariate standard normal distribution for this example is shown in  Figure 10  . 

 Figure 10 - Joint probability surface (transformed precipitation) 

 The linear dependence structure between  v  as a function  of  u  is given by: 

 Equations 5a and 5b 

 in which: 

 = mean of observed values  v  given that forecast  𝑢 =  𝑢 
 𝑜 

 = standard deviation of observed values  v  given  that forecast  𝑢 =  𝑢 
 𝑜 

 The surface  is then back-transformed from  u-v  space to  x  -  y  space to obtain the  ℎ ( 𝑢 ,  𝑣 )
 bivariate meta-Gaussian distribution  .  This  is done using  Equation  6  below, which is  ℎ ( 𝑥 ,  𝑦 )
 equation 19 in Herr and Krzysztofowicz (2005). In doing so, the original marginal distributions 
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 are enforced, and the dependence structure, linear in the  u  -  v  domain, becomes non-linear in the 
 x  -  y  domain. 

 Equation 6 

 in which: 

 =  joint probability distribution  ℎ ( 𝑥 ,  𝑦 )
 =  bivariate meta-Gaussian distribution  𝑚𝑔 ( 𝑥 ,  𝑦 )
 =  standard normal density function  𝑞 ( )
 =  inverse of cumulative standard  normal distribution function  𝑄 − 1 (   )
 =  cumulative marginal distribution of forecast  value (  x  )  𝐹 ( 𝑥 )
 =  cumulative marginal distribution of observed  value (  y  )  𝐺 ( 𝑦 )
 =  marginal probability density function of  forecast value (  x  )  𝑓 ( 𝑥 )
 =  marginal probability density function of  observed value(  y  )  𝑔 ( 𝑦 )

 In  Equation 6  , as the gamma functions  and  are each defined by shape and scale  𝑓 ( 𝑥 )    𝑔 ( 𝑦 )   
 parameters, the total number of parameters required to define  is five:  𝛼  x  , 𝛽  x  , 𝛼  y  , 𝛽  y  ,  ℎ ( 𝑥 ,  𝑦 )
 and  .  The computed values of these parameters for  this example are:  𝛼  x  =  0.54  ,  𝛽  x  =  41.6  ,  𝛼  y  =    γ
 0.86  ,  𝛽  y  =  47.3  ,  and  𝛶  =  0.882  (0.851 in  u-v  space).  The resulting surface,  is shown in  ℎ ( 𝑥 ,  𝑦 ),
 Figure 11  . 

 Figure 11 - Joint probability surface (precipitation) 
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 The conditional probability surface  for the  canonical event is obtained from  Equation  7  ,  ℎ ( 𝑦  |  𝑥 )
 and the resulting surface is shown in  Figure 12  . 

 Equation 7 

 =  ℎ ( 𝑦  |  𝑥 )
 ℎ ( 𝑥 , 𝑦 )
 𝑓 ( 𝑥 )

 Figure 12 - Conditional probability surface (Precipitation) 

 This surface reflects the back-transformed dependence structure defined by  Equations 5a  and 
 5b  (confidence intervals are shown  Figure 6  ).  Note  that when the surface was developed, the  x 
 axis represented the  past  forecast value, but when  used operationally, the  x  axis represents the 
 current  forecast value. For this reason, consistency  between current and past forecast sources 
 is essential. 
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 F2 - Air temperature (example) 
 In this example, a 1-day (no lead time)  canonical event temperature hindcast data set of 594 
 data pairs for the upper basin of North Fork Dam of the American River is plotted in  Figure 13  . 
 The extracted data are for December 27 (12z to 12z). The method for extracting the observed 
 and past forecast values is shown in  Table 10b  . 

 Marginal Distributions 
 A normal distribution is fit to each sample group to obtain the two resulting marginal 
 distributions,  f(x)  and  g(y).  These  are shown in  Figures  14a and 14b  . Data bins are also 
 shown for comparison. 

 Joint Probability Distribution 
 For one canonical event, the bivariate normal density function (  Equation 8  ) is used to estimate 
 the joint probability distribution  h(x,y  ) of observations  (  y  )  and past forecast canonical event 
 inputs (  x  )  .  h(x,y  ) is completely defined by the four  marginal parameters:  𝜇  x  , 𝜎  x  , 𝜇  y  , 𝜎  y  , and 
 correlation coefficient  .  The five parameters are  computed directly from the samples.    γ

 Equation 8 

 in which: 

 =  joint probability distribution (in this  case bivariate normal)  ℎ ( 𝑥 ,  𝑦 )
 𝜇  x  =  sample mean of past forecasts (  x  ) 
 𝜎  x  =  sample standard deviation of past forecasts  (  x  ) 
 𝜇  y  =  sample mean of observations (  y  ) 
 𝜎  y  =  sample standard deviation of observations  (  y  ) 

 =  Pearson’s product-moment correlation coefficient γ

 Computed values of the 5 parameters for this example are  𝜇  x  = -3.37,  𝜎  x  = 4.17,  𝜇  y  = -1.48, 
 𝜎  y  = 3.84, and  = 0.80.  The resulting joint  probability surface,  h(x,y  ), is shown in  Figure 15  . γ
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 Figure 13 - Data pairs and confidence intervals (Tmax) 

 Figure 14 - Marginal distributions and data bins (Tmax) 
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 Figure 15 - Joint probability surface (Tmax) 

 A useful property of the bivariate normal distribution is that the dependence structure between  x 
 and  y  is linear and requires computation of only one  additional parameter,  , from the data. As γ
 shown by  Equations 9a  and  9b  , the conditional mean  value of  y  is a straight line, and  t  he 
 conditional standard deviation of  y  is a constant.  These properties represent the change in 
 distribution of observations with respect to forecast value for one canonical event. 

 Equations 9a and 9b 

 in which: 

 = mean of observed values  y  given that forecast  ,  𝑥 =  𝑥 
 𝑜 

 = standard deviation of observed values  y  given  that forecast  .  𝑥 =  𝑥 
 𝑜 
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 Conditional probability surface 
 While the joint probability surface is informative, it is the conditional probability surface, given by 
 Equation 7  , that we are most interested in. 

 Equation 7 (repeated) 

 =  ,  ℎ ( 𝑦  |  𝑥 )
 ℎ ( 𝑥 , 𝑦 )
 𝑓 ( 𝑥 )

 In  Equation 7  ,  is the marginal distribution  of past forecast samples. We are in effect  𝑓 ( 𝑥 )
 normalizing the joint probability surface to the marginal distribution of past forecasts. The 
 resulting conditional probability surface for this example is shown in  Figure 16  . 

 Figure 16 - Conditional probability surface (Tmax) 

 This surface clearly reflects the dependence structure defined by  Equations 9a  and  9b  (see 
 confidence intervals in  Figure 13  ).  When this surface  is “sliced” with a  y  -  z  plane at a selected  x 
 value, the resulting intersection is a normal distribution. If a different value of  x  is chosen for the 
 slice, the same distribution will result, but will be shifted in the y direction. Note that when the 
 surface was developed, the  x  axis represented the  past  forecast canonical input value, but when 
 used operationally, the  x  axis represents the  current  forecast canonical input value. For this 
 reason, consistency between current and past forecast sources is essential, as indicated in 
 Table 10  . 

 For the canonical event represented by  Figure 13  ,  if the current forecast canonical input value 
 were a maximum temperature (Tmax) of 10 deg C, then the conditional normal distribution 
 associated with that value defines the corresponding range of uncertainty of the 18z-00z 
 average temperature (Tavg) forecast. Following the above steps, another surface for the Tmin 
 case would also be developed from data pairs of Tmin and  06z-12z Tavg. 
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 G - Generate and sample conditional probability distributions 
 With conditional probability surfaces defined (  Figures  12  and 16  ), the MEFP “slices” each 
 surface at the corresponding current forecast canonical input value.  The slice reveals the 
 conditional distribution of observations associated with the current forecast value. The 
 conditional distribution is inherently bias-corrected and reflects historically consistent spread, 
 because it is a distribution of observations (not past forecasts). 

 Sampling is done using equally spaced increments of cumulative probability along the vertical 
 H(y|x) axis. The values of non-exceedance probability (NEP) used for sampling are given by 
 Weibull plotting positions, which are defined by : 

 Equation 10  NEP = r / (n + 1) 

 where:  NEP  = non-exceedance probability (Weibull  plotting position) 
 r  = rank of sample (from largest  to smallest) 

 n  = sample size = number  of ensemble members needed 

 Note that the maximum value of NEP is less than 1.0 and the minimum value of NEP is greater 
 than 0. This allows for the possibility of extreme events in the population that are not reflected in 
 the sample. 

 G1 - Precipitation (example) 
 Using the conditional probability surface developed for precipitation in the previous section, 
 Figure 17a  shows the conditional probability surface  for precipitation from  Figure 12  , with two 
 colored curves indicating slicing the surface at two hypothetical current forecast canonical input 
 values of 25 and 200 mm on the x axis. The resulting magenta curve is the conditional 
 probability distribution given a current forecast value of 25 mm, and the resulting blue curve is 
 the conditional probability distribution given a current forecast value of 200 mm. The resulting 
 difference in mean and spread of the conditional distributions is seen in  Figure 17b  .  Figure 17c 
 shows the cumulative form, H(y|x), of the same distributions. Note that during operations, only 
 one current forecast canonical input value, and therefore only one conditional probability 
 distribution, is produced for each canonical event. 
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 a 

 b  c 

 Figure 17 - Conditional probability distributions (precipitation) 

 The samples must be drawn so as to be  unbiased, in  order that the resulting distribution of 
 samples is reflective of the original continuous distribution  .  It is also desirable that the sampling 
 method is repeatable. To satisfy these requirements, the MEFP draws samples from the 
 cumulative form of the conditional probability distribution  H  Y|X  (y|x).  This is given by  Equation 
 11  , which is Equation 20 in Herr and Krzysztofowicz  (2005). 
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 Equation 11 

 in which: 

 H  Y|X  (y|x)  =  cumulative conditional probability distribution 
 Q (   )  =  cumulative standard normal distribution  function 
 Q  -1  (   )  =  inverse of cumulative standard normal distribution  function 

 =  cumulative (gamma) distribution of forecast  value (  x  )  𝐹 ( 𝑥 )
 =  cumulative (gamma) distribution of observed  value (  y  )  𝐺 ( 𝑦 )

 Figures 18a and 18b  illustrate drawing  n  samples from  cumulative probability distributions 
 corresponding to hypothetical current forecast canonical input values of 25 mm and 200 mm. 
 The resulting sample values are indicated on the horizontal axes. 

 Forecast = 25 mm                                    Forecast = 200 mm 
 a  b 

 Figure 18 - Sampling of conditional probability distributions (precipitation) 
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 G2 - Air temperature (example) 
 The process for generating conditional probability distributions for temperature is fundamentally 
 the same as for precipitation, but for each canonical event two surfaces are required: 

 ●  Tmax forecast vs 18z-00z Tavg observed (  Figure 16  ). 
 ●  Tmin forecast vs  06z-12z Tavg observed. 

 Operationally, MEFP would “slice” each surface at their respective forecast values, and two 
 samples drawn by stratified sampling:  one sample of  n  Tmin values and one sample of  n  Tmax 
 values. (Improved illustrations for this section have not yet been developed. 

 Figure 16 (repeated) - Conditional probability surface (Tmax) 

 H - Create ensemble forcings (Schaake Shuffle) 
 Samples drawn from the conditional probability distributions for all canonical events are input to 
 a procedure known as the Schaake Shuffle. The procedure is a simple and efficient method 
 used to preserve the space-time statistical properties of climatology among multiple 
 hydro-meteorological variables across multiple forecast locations for ensemble forecasting. For 
 this application at CNRFC, once MEFP has drawn the  n  samples from each conditional 
 probability distribution for each canonical event for a forcing type, the Schaake Shuffle uses the 
 historically-based correlation values associated with each canonical event as a basis for sorting 
 and scaling. The modified events are then stitched together based on common year ranking. 
 This generates the desired  n  -member ensemble spanning  14 days. 
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 H1 - Precipitation 
 Beginning with precipitation, it is useful to organize the sample as shown in  Table 14  . Note that 
 column width does not reflect canonical event duration. The top row provides an arbitrary id 
 number for each canonical event. Precipitation is represented by 33 base events and 7 
 modulation events. The first column contains an arbitrary number id for each sample. Each 
 column represents the individual sample values drawn from the conditional probability 
 distribution for the canonical event represented by the column. Data values, shown as “b” and 
 “m”, represent base event and modulation event sample values. The last row contains the 
 correlation coefficients (between observed and past forecast samples) for each canonical event. 
 These values are indicated by “c”. The canonical event values represent accumulated 
 precipitation during each canonical event. 

 Table 14 - Precipitation samples for Schaake Shuffle (forecast Days 1 - 14) 

 The Schaake Shuffle ranks base events extracted from the  n  -year historical record, and assigns 
 year labels to the base events of corresponding rank.  A detailed example of the Schaake 
 Shuffle applied to precipitation is provided in the attachment “  Schaake Shuffle Step-by-Step 
 Example  ”. If there were no modulation events, each  set of base events having matching year 
 labels would be merged to form the set of  ensemble members (this is how it is done for 
 temperature). However, precipitation has modulation events, which overlap base events and 
 sometimes other modulation events. To handle this, the Schaake Shuffle considers all (base and 
 modulation) events, in order from lowest correlation to highest. Typically, modulation events will 
 have higher correlation, and will apply after base events, thus “modulating” the base events. 
 When a modulation event is considered, base events contained by the modulation event are 
 adjusted to be consistent with the modulation event. 
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 H2 - Air temperature 
 As described in  E1 - Temperature  , conditional probability  distributions that relate Tmax forecasts 
 and Tmin forecasts to Tavg (18z to 00z) and Tavg (06z to 12z) observations respectively, for 
 each day of the forecast, are used to construct the temperature ensemble. For the two 6-hour 
 periods not addressed (00z to 06z, 12z to 18z), the MEFP interpolates to fill gaps. This is shown 
 in  Table 15  . 

 Table 15 - HEFS processing of temperature (Tmin and Tmax) 

 Temperature is represented by 12 base events, and no modulation events. The first 10 base 
 events are 1-day periods. The last 2 are 2-day periods. From each base event the Tmin and 
 Tmax values are extracted from past forecasts and the current forecast. Samples of 6-hour Tavg 
 are drawn from the corresponding conditional probability distributions.  Tables  16a  and  16b 
 show how the sampled values can be organized, with “b” and “c” indicating base event sample 
 and correlation values respectively. 

 Tables 16a and 16b - Temperature samples for Schaake Shuffle (forecast days 1 - 14) 

 The Schaake Shuffle treats the values in  Tables  16a  and  16b  separately. With  Table 16a  , base 
 events are extracted from the  n  -year historical record,  and year labels are assigned to the base 
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 events of corresponding rank. There are no modulation events, so no further adjusting of values 
 is necessary. The process is repeated for the values in  Table 16b  . The temperature ensembles 
 are created by merging (alternating 06z-12z and 18z-00z) Tavg values having the same year 
 label, and then interpolating in time between those values to obtain the missing 00z-06z and 
 12z-18z Tavg values. Each resulting set of values having matching year labels is an ensemble 
 member. 

 I - Extend ensemble forcings with raw climatology 
 For the CNRFC morning forecast (T0 = 12z), the ensemble is extended to span days 25 - 365 of 
 the forecast. This part of the ensemble is defined  outside  of the HEFS using raw climatology, in 
 which each member corresponds to one year in the  n  -year  historical record. Raw climatology is 
 also used to define ensemble members for freezing level for days 11 through 365. The resulting 
 365-day  forecasts  are then merged with the 10-day  single-valued  observed  forcings (QPE, 
 QTE, and QZE) to create the 375-day (from T0 - 10 days to T0 + 365 days) forcing series 
 required to execute the hydrologic models. A summary of the resulting forcings is provided in 
 Table 6  . Note that work is underway at CNRFC to configure  MEFP to generate a freezing level 
 ensemble for days 1 through 10. 

 Table 6 (repeated) - Single-valued forcings for ensemble forecasts 

 Apply ensemble forcings to the hydrologic models 
 The ensemble forcings are applied across all subbasins (3 forcings for each subbasin elevation 
 zone) one member at a time. This ensures that historically-based spatial and temporal patterns 
 embedded by the Schaake Shuffle are preserved. The results of applying the ensemble forcings 
 to the hydrologic models are ensemble streamflow forecasts, reflecting only meteorologic 
 uncertainty. At each ensemble forecast location, the ensemble streamflow forecast consists of  n 
 members. 
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 7 MEFP Limitations 
 This section is intended to list the more significant limitations of MEFP. Some limitations, 
 particularly those relating to issues of consistency, are not limitations of the HEFS methodology, 
 but are limitations on data availability. Other limitations, particularly those contributing to 
 underprediction of rare events, will be addressed to some extent with the release of the HEFS 
 version 2. 

 Only meteorological uncertainty is considered 
 The MEFP system is a very robust and stable system that can be implemented easily into an 
 operational environment.  Verification studies done by the CNRFC have shown that the MEFP 
 program provides statistically reliable spread across seasons, lead times, and event size. 
 However, the uncertainty is limited to that associated with forecasted precipitation and 
 temperature.  The HEFS does have hydrologic uncertainty components (EnsPostPE and 
 EnsPost), but these have not yet been implemented at the CNRFC. This is because previous 
 testing on an early version of HEFS indicated additional refinement of these components would 
 be appropriate before testing further. 

 The MEFP does not generate freezing level ensembles 
 Another MEFP limitation is the quality of temperature estimates during winter storms.  Since 
 MEFP can only be parameterized for temperature and precipitation, uncertainty in rain-snow 
 elevation estimates is derived within SNOW-17 when the lapsed temperature forecast is used to 
 estimate the rain-snow elevation. MEFP creates 6-hour temperature ensembles derived from 
 daily maximum and minimum forecasts. This method works well when describing the daily 
 diurnal pattern during clear sky situations. But it does not work well for precipitation events when 
 variations between daily maximum and minimum temperature are compressed or even 
 non-existent. This occurs when storm attributes, such as frontal passage, overwhelm the normal 
 diurnal pattern. In these situations, the diurnal pattern forecast can be overstated and result in 
 incorrect precipitation typing (rain or snow). This can be problematic for basins where watershed 
 area changes dramatically with just a slight change in elevation.  In these cases, a very large 
 area of the watershed could be modeled as snow falling due to unreasonable low temperature 
 estimates from the diurnal temperature estimates. This issue could be improved by adding a 
 third parameter to the MEFP - freezing level.  Also, parameterizing temperatures based on 
 6-hour records rather than daily maximums and minimums would also be an improvement. 
 Because of this, CNRFC has configured HEFS to use the single-valued freezing level estimate 
 (HAS-QZF) for all ensemble members for the first 10 days of the forecast.  This change 
 eliminates any uncertainty in precipitation typing, but does provide a more realistic estimate of 
 where it is raining and snowing in a watershed.  So MEFP temperature uncertainty impacts are 
 limited to snowmelt processes modeled by SNOW-17 during the first 10 days of the forecast 
 run. 
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 CNRFC notes that other RFCs are using the two temperature slots in the MEFPPE to forecast two of 
 the synoptic times and then interpolating the other two. So there is a mitigation/workaround for 
 situations where the diurnal-cycle modeling is inappropriate. 

 Conditionality of meteorological uncertainty 
 In addition, as described above, the MEFP is calibrated using samples across a moving 61-day 
 window.  The samples likely represent a diverse set of atmospheric conditions that do not have 
 the same predictability.  As such, it is possible that MEFP provides over-dispersed ensembles 
 when atmospheric conditions are more predictable (strongly forced frontal system)  and 
 under-dispersed ensembles when atmospheric conditions are less predictable (a cut-off low or 
 convective).  However, deriving conditional distributions could run into issues related to 
 inadequate sample sizes. 

 Limited ensemble spread in late season snowmelt forecasts 
 While HEFS forecasts generated by MEFP reflect uncertainty in meteorology, uncertainty in the 
 current state of the hydrologic models is not reflected. With respect to snowmelt forecasts, it is 
 important to recognize that uncertainty in the modeled snowpack is not reflected. While 
 hydrologic models are periodically updated to reflect latest available snow course 
 measurements, the resulting values of basin zone snow-water equivalent (SWE) are 
 single-valued best estimates. Uncertainty about these estimates is not modeled. 

 Consistency in forecast models and methods 
 Current and past forecast data sets should be as consistent as possible to avoid introducing 
 errors in bias or spread into the ensemble forecast. Ideally, the current operational forecast 
 model, and associated forecast methods, would be exactly consistent with the model and 
 methods reflected in past forecasts. However, the operational forecast model and methods are 
 adjusted with time in order to provide a best forecast. Past forecasts in the form of reforecasts 
 will typically reflect a single “frozen” version of the model, and past forecasts in the form of 
 archived forecasts will reflect any changes in models or methods during the record. Efforts are 
 made to build data sets that are as consistent as possible, but they are not perfectly consistent. 

 An example of a known inconsistency at the CNRFC is described here. At the CNRFC, the NBM 
 can comprise a significant component of the QPF for days 1 - 6, which is the single-valued 
 precipitation input to the MEFP. Archived forecasts for the period of record WY 2010 - 2023 
 were supplied to the MEFPPE for computation of statistical parameters. However, the National 
 Blend of Models (NBM), which is a component of the current NBM QPF, is only reflected in the 
 NBM QPF forecast archive for the last few years of the record. Through testing, the CNRFC 
 determined that ensembles computed using the NBM QPF for days 1 - 6, still out performed 
 GEFSv12 even with the inconsistent representation of the NBM. 

 Consistency in period of record 
 The HEFS computations can also be affected by inconsistencies in period of record. There is a 
 period of record of historical data that the Schaake shuffle draws upon to rank historical 
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 canonical events. This period of record should equal that from which canonical events are 
 drawn for the MEFPPE to compute statistical parameters.  Computations to create ensembles 
 beyond the MEFP period (14 days at the CNRFC), which can be based on raw or sampled 
 climatology, should also reflect the same period of record to prevent sudden changes at the 
 transition. 

 Only one parametric distribution option 
 The MEFP is limited to the gamma distribution for fitting the marginal distributions of 
 observations and forecasts.  This can be an issue when trying to get a good fit at the tails of a 
 distribution.  The quantile-quantile plots in  Figures  19 and 20  show how observations and 
 forecasts for an example location, French Meadows (FMDC1), do not have a good fit in the 
 upper tail of the distribution.  Verification studies at the CNRFC have shown that this issue can 
 adversely affect the reliability of the ensemble forecast associated with a large event (greater 
 than about 200 mm over 3 days at FMDC1), resulting in a low bias. 

 Figure 19 - French Meadows  Observed  Data & Theoretical  Quantiles for 3-day Total 
 Precipitation for January 26th 60-day Window Sample Size 
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 Figure 20 - French Meadows  Forecast  Data & Theoretical  Quantiles for 3-day Total 
 Precipitation for January 26th 60-day Window Sample Size 

 Type-II conditional bias 
 Type-II conditional bias (T2CB) in this case refers to the tendency of MEFP to systematically 
 underestimate the most extreme observed precipitation amounts. In contrast, smaller forecasts 
 are reasonably unbiased, conditional upon the forecast amount (aka small Type-I conditional 
 bias or good "reliability"). The main reason for this is a “regression dilution” or “attenuation 
 effect” (see  Wikipedia  for description), which is  common with regression-type statistical 
 post-processors, such as the MEFP. Methods for reducing the effect of T2CB are under 
 consideration for implementation in the HEFS v2. 

 Lack of smoothness between canonical event boundaries 
 Each canonical event is a separate statistical model. When these models are brought together 
 in a forecast horizon, without any kind of smoothing (as is the case with the MEFP), then any 
 differences in the statistical behavior between these events (e.g., merely due to sampling 
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 uncertainty) will translate into discontinuities in the forecast horizon. They are generally most 
 prominent for temperature because it is a smoothly varying time-series. At the CNRFC, this lack 
 of smoothness can also occur when transitioning from the last day of the MEFP-generated 
 ensemble forecast (day 14) to the first day of the ensemble forecast developed outside of MEFP 
 using raw climatology. This occurs when there is an inconsistency between the “no-skill” 
 baseline adopted by the MEFP for periods of forecast forcing, which is known as “resampled 
 climatology”, and the raw climatology used after the period of forecast forcing. This typically 
 occurs when the period of record for the forecast forcing (and hence resampled climatology) is 
 different from the period of record used for raw climatology. 

 The Schaake Shuffle is not flow dependent 
 The MEFP uses observed time-series that begin on the same historical month/day/hour in each 
 of N historical years. It is purely conditional upon the month, day and hour at which the forecast 
 is issued, nothing else. For example, if there is an extreme atmospheric river on 21 January 
 2024 at location XYZ, but there are no similar cases on or near that calendar day in the 
 historical record, then the Schaake shuffle will provide a poor representation of the space time 
 patterns because it will use largely dry conditions to shuffle an extremely wet forecast. In that 
 case the Schaake shuffle will effectively randomize the inputs (since dry values all have tied 
 ranks). Alternatives to the Schaake shuffle exist, each with unique strengths and weaknesses. 
 One such alternative under consideration is adopting a “flow dependent” approach, in which 
 shuffling is conditioned on the current forecast (GEFS for example) state of the atmosphere. 
 This has the potential benefit of being more likely to capture extreme conditions if the 
 forecasting model is more skillful than climatology (which is, effectively, what the Schaake 
 shuffle relies on), but also has limitations which are beyond the scope of this document. 
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 8 HEFS Products 
 The phrase “HEFS products”, as used in this section, refers to the streamflow forecast 
 ensembles and the variety of probabilistic products derived from them. A variety of HEFS 
 products are disseminated through the  CNRFC website  .  The simplest are the actual streamflow 
 forecast ensemble time series, which can be downloaded in csv format. Hourly ensemble csv 
 data include regulation effects and are provided out to 30 days. Daily ensemble csv data which 
 do not include regulation effects are provided out to 365 days. 

 The hourly 30-day HEFS forecasts can be downloaded for an entire forecast group in csv format 
 at:  30-day HEFS  (  Figure 21  ).  Through this website,  a user can also obtain older ensemble 
 forecast csv files through the “Forecast Groups Archive” at the bottom of the page.  There is 
 also an option to obtain the current ensemble forecast in csv format for a single location by 
 entering in the five character ID in the “Individual Points” section. 

 Ensemble traces can also be viewed and downloaded in csv format for a given location in the 
 interactive short-range peak exceedance plot for every location where HEFS results are 
 available.  Figure 22  shows an example for the West  Walker River.  All of the traces can be 
 displayed on the plot by clicking the “View Model Traces” button to the right of the graph.  The 
 hourly csv data can be obtained by clicking on the 5 letter ID above the graphic where it says 
 “CSV Ensemble File Download”. There are other short-range graphics that can be viewed on 
 the CNRFC website, such as probabilistic accumulated volumes, and daily box plots and 
 histograms. 

 There are also a number of long-range volume plots for many HEFS locations as well.  There 
 are graphical displays for forecast monthly, seasonal (April-July), water year, and multi-year 
 volumes.  Above the water year accumulation plots (  Figure 23  ) the daily 365-day ensemble 
 time series can be accessed by clicking on the five letter ID next to the “CSV Ensemble File 
 Download” text.  There is also a 365-day HEFS csv download site similar to the hourly one 
 where a user can download an HEFS forecast csv file for all locations in a given forecast group, 
 obtain older HEFS forecasts for a given date, and also get a current 365-day HEFS forecast for 
 a specified location.  This site can be accessed by clicking on the “Forecast Group” text to the 
 right of the “CSV Ensemble File Download”. 
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 Figure 21 - Hourly 30-day Ensemble Streamflow Forecasts 
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 Figure 22 - Short-Range Ensemble Graphic 
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 28 
 Figure 23 - Long-Range Water Year Accumulation Plot 
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 10 Attachment “Schaake Shuffle Step-by-Step Example” 
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Schaake Shuffle Step-by-Step Example



•Assume we have a 24 hour precipitation forecast.  We have 4 6-hour 
base events and one 24 hour total modulation event – 5 canonical 
events.

•Assume we have 10 ensemble members that matches the number of 
years we have in our climatology.

•The Schaake Shuffle will compute the mapping of the ensemble 
members one canonical event at a time starting from lowest 
correlation, and ending with the highest correlated canonical event.

•Base and modulation event precipitation amounts will be shuffled 
based on the climatological ordering technique.



Here are the raw ensemble member precipitation values generated by MEFP prior 
to being shuffled by the Schaake Shuffle method

6-hour base event periods 24 aggregation 
modulation event

correlation values



Based on the correlation values, the 18-24 hour period will get shuffled first because it has the 
lowest correlation.  The modulation event will be applied last because it has the highest 
correlation.

1234 5



24 aggregation 
modulation event

• Let’s start with the Schaake Shuffle being applied to the lowest correlated period: 18-24 hr.

• We want to map these 10 members to historical years as part of the Schaake Shuffle.

• We apply the Schaake Shuffle method to each base event, one at a time.

• We will step through this example step by step for base event 18-24hr.

• The shuffling for the 18-24 hour period is associated with the corresponding historical precipitation 
amount ordering.

MEFP unshuffled precipitation 6-hr 
precipitation values

Historical precipitation values for 
corresponding forecast periods



First, the 10 ensemble values are ranked by forecast value for the base event of 
interest.  



The 10 historical precipitation amounts are determined for 
the  given forecast period.



The 10 historical precipitation 
amounts are then ranked.



The highest ranked precipitation ensemble value is assigned the historical year with the largest precipitation 
amount.



The second highest ranked precipitation ensemble value is assigned the historical year with the second 
largest precipitation amount.



This process is repeated for all ensemble values.

















• Now let’s look at the ensemble members for the second lowest correlated base event:  12-18 
hour forecast period.

• Ensemble members are ranked just like for the 18-24 hour base event



Historical values for the base event are selected and ranked just like for the 18-24 base event



Results from Base Event 18-24 hr

Results from Base Event 12-18 hr



Results from Base Event 6-12 hr

Results from Base Event 0-6 hr



Results from Modulation Event 0-24hr Total



Combined Results for the 4 base events
0-6 hr 6-12 hr 12-18 hr 18-24 hr

Sorted Base Events are Combined into shuffled ensemble time series



• Now we apply the modulation event last since it has the highest correlation

• The 24-hour modulation event is shuffled like the base events (see previous graphic)

• 6-hour values are summed up over 24 hours

6-hour values aggregated over 24 
hour period Shuffled 24 hour 

Modulation Event Values



A factor is calculated that will be applied uniformly to the individual 6-hour precipitation 
values  so that the 6-hr summations equal the modulation event totals

Modulation event 
shuffled totals

Ratio of modulation event values to 
6-hr aggregations over 24-hr period

24-hour totals from 
6-hour values



A factor is calculated that will be applied uniformly to the individual 6-hour precipitation 
values.  In this case, since the modulation event is applied last, the scaled 6-hour 
precipitation 24 hour totals equals the shuffled modulation event totals.

Ratio of modulation event values to 6-hr 
aggregations over 24-hr period

=x

New 6-hr totals 
equal modulation 
event totals



• In this example, the modulation event had the highest correlation, so 
it was ordered and applied last after all base events.

• If the modulation event had a lower correlation than one of the 
6-hour base events, the modulation event would be applied before 
the 6-hour base event with the higher correlation.

• So the modulation event would be applied prior to all of the 6-hour 
base events being shuffled, and assigned historical year labels.

• In this case, climatological values are used for the base events that 
have not gone through the Schaake Shuffle when computing the 
modulation scale factor.

•The climatological values for the 6-hour base event with the higher 
correlation are replaced with shuffled MEFP values after the 
modulation event has been applied.
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