Rain-on-Snow

 Snowmelt Modeling

 Snowmelt Modeling}

Pete Fickenscher

Hydrologist
California-Nevada River Forecast Center
National Weather Service
San Joaquin River Flood Control Association
Feb. 16, 2006

Snowmelt Due to Rain-on-Snow

Snowmelt Due to Rain-on-Snow

Simple Energy Balance
$\mathrm{Mr}=\underline{\mathrm{Cw}^{*} \mathrm{Px}_{\mathrm{x}}}$ * (Tw-273.16) Lf
$\mathrm{Mr}=$ Melt Rate (mm)
$\mathrm{Cw}=$ Specific heat of water
Px $=$ Precipitation (mm)
Lf $=$ Latent heat of fusion
$\mathrm{Tw}=$ Wet-bulb Temp. (K)

Tw	Melt (\% of Px)
$50^{\circ} \mathrm{F}$	12.5%
$68^{\circ} \mathrm{F}$	25.0%

Rain-on-Snow

Snow-17 - Operational Equation

$$
\begin{aligned}
\mathrm{M}= & (0.0125 * \mathrm{Px} * \mathrm{Ta}) \\
& +3.67 * 10^{-9} * \Delta \mathrm{t} / 6 *(\mathrm{Ta}+273)^{4}-20.4
\end{aligned} \quad\{\text { rainmelt }\}
$$

Rain-on-Snow

Snow-17 - Operational Equation

$$
\begin{aligned}
\mathrm{M} & =(0.0125 * \mathrm{Px} * \mathrm{Ta})
\end{aligned} \quad\{\text { rainmelt\} }\}
$$

Assumptions:

- no solar radiation
- relative humidity $=90 \%$
- atmospheric radiation $=$ black body at Ta
- wet bulb temperature (rainwater) $=\mathrm{Ta}$
- UADJ is the average wind function during rain-on-snow events
- The snowmelt occurs at the surface of the snowpack

Rain-on-Snow

Snow-17 - Rainmelt

Assume a 6 hour event with constant $\mathrm{Ta}=45^{\circ} \mathrm{F}$ and 2 inches of rain

Ta	Melt (inches)
$45^{\circ} \mathrm{F}$	$0.18(9 \%)$

Snowmelt Due to Rain on Snow

$\rightarrow-2$ inches of rain/6hours

Rain-on-Snow

Snow-17 - Longwave Radiation

Assume a 6 hour event with constant Ta $=45^{\circ} \mathrm{F}$

Ta	Melt (inches)
$45^{\circ} \mathrm{F}$	$0.09(4.5 \%)$

Note: This melt is independent of rainfall amount

Snowmelt Due to LW Radiation

$\rightarrow 6$ hour melt

Rain-on-Snow

Snow-17 - Turbulent Transfer

Assume a 6 hour event with constant Ta $=45^{\circ} \mathrm{F}$

Ta	Melt (inches)
$45^{\circ} \mathrm{F}$	$0.23(11.5 \%)$

Note: This melt is independent of rainfall amount.

UADJ set to 0.09 (12 mph wind)

Snowmelt Due to Turbulent Transfer

Rain-on-Snow

Snow-17 - Component Comparison

Assume 2 inches of rain during a 6 hour event with constant Ta

Ta	Total Melt (inches)
$45^{\circ} \mathrm{F}$	$0.50(25 \%)$
$40^{\circ} \mathrm{F}$	$0.30(15 \%)$
$35^{\circ} \mathrm{F}$	$0.11(6 \%)$

Note: $41^{\circ} \mathrm{F} \rightarrow 0.34$ (17\%)

Example - 1997 Event

Snow Water Equivalent Comparison ('96-'97)

Example - 1997 Event

Dec. 30, 1996 - Jan. 2, 1997

Blue Canyon (5300')
Average Temp ($42.5^{\circ} \mathrm{F}$):
Rainfall $=19.8$ inches
SWE loss $=5.3$ inches
Ratio $=27 \%$

Greek Store (5600'):
Rainfall $=13.8$ inches
SWE loss $=0.80$ inches
Ratio $=6 \%$

Snow Water Equivalent Comparison ('96-'97)

Greek Store snowpack was deeper and less "ripe", more sheltered. Rain-on-snow melt is highly dependent on pack conditions

Example - 1997 Event

Dec. 30, 1996 - Jan. 2, 1997

Huysink (6600)
Average Temp $\left(42.5^{\circ} \mathrm{F}\right)$
Rainfall $=16.55$ inches
SWE loss = 2.0 inches
Ratio $=12 \%$

Central Sierra Snow Lab: CSSL (6900'):
Rainfall $=$??
SWE loss $=0.0$ inches
Ratio $=0 \%$

Snow Water Equivalent Comparison ('96-'97)

Example - 1997 Event

Dec. 30, 1996 - Jan. 2, 1997

SNOW - 17 (NFDC1UP):
Average Temp ($41^{\circ} \mathrm{F}$)
Rainfall $=18.0$ inches
SWE loss $=3.28$ inches
Ratio = 18 \%

Snow Water Equivalent Comparison ('96-'97)

Snowmelt Due to Rain-on-Snow

Summary

- Rain-on-Snow is a complex phenomena.
- Many variables need to be considered.
(Temperature, humidity, wind speed, snowpack conditions, forests,...)
- The strongest component is usually turbulent transfer.
- All components together may reach 25% (or more) snowmelt-torain ratios in very warm events, especially at lower elevations.
- When snowpack is deep and still cold, little additional snowmelt occurs during rain-on-snow events.

